PAGE
108

THE HALF-MULTIPLIER OPERATOR

[A]Tij o [B]jk = [C]JK
NESTED ARRAYS

MATRIX PROGRAMMING

AND

THE UNIFIED FIELD EQUATION
C([A]Tij o [B]jk)= [C]JK
BY

CLINTON L. HOLT

THE UGLY DUCKLING

CLASSICAL PHYSICS

C([A]Tij o [B]jk)= [C]jk

Let c = m, and [B]jk = [a]jk (acceleration) and [C]jk = Fjk, then

[C]jk = m([A]Tij o [B]jk) but [A]ij = [I]jj and [B]jk = [a]jk and [C]jk = Fjk, so

Fjk = m([I]jj o [a]jk) for m = to a constant.

Fjk = m([a]jk)

If [A]ij ([I]jj , then we have

Fjk = m([A]Tij o [a]jk)
EINSTEIN’S FIELD EQUATION FOR GRAVITATION

 C([A]Tij o [B]jk)= [C]jk

Let [C]jk = [G]jk , [B]jk = [T]ij and [A]ij = [I]jj and c = 8((.

Then we have:

8((([A]Tij o[T]jk) = [G]jk but [A]ij = [I]jj so we have

8(([T]jk = [G]jk which is Einstein’s First Field Equation. This is the equation as we now understand it, but the true equation is 8((([A]Tij o[T]jk) = [G]jk.

GRAVITATIONAL WAVE EQUATION:
 [G]jk = 8(((T[T]jk(

8(((T([A]Tij o [T]jk)(

or [G]jk =

 (T (

(T (
Gjk is now solvable.

STATISTICS

There was, until now, no field equation describing the field of statistics.

Going back to the Unified Field Equation:

C([A]Tij o [B]jk)= [C]jk and for the simple case, letting [B]jk = [I]jk and c = 1/N, the equation becomes:

1/N([A]Tij o [B]jk)= [C]jk =1/N([A]Tij o [I]jk)= 1/N([A]Tij) = [C]ij

Since [A][I] is a straight multiplication problem, we do not need to transpose it. But we do need to sum the columns of [A], so the basic statistical equation becomes:

1/N([1]1,I[A]ij) = [C]1j
But to make this statistical, we must square the above expression so that it becomes:

1/N([1]1,i[A]ij)2 = [C]21j
Where [C]21j = CCT. (this gives us a one by one matrix as a solution).

Suppose [B]jk is not = to [I]jk. Then we have our basic complex statistical field equation, the simplest form of which is the Analysis of Variance.

1/N([1]1,i[A]ij[B]jk)2 = [C]21,k where [C]2 = CCT

But we also need to subtract the correction factor(s), so the total statistical field equation becomes:

1/N([1]1,i[A]ij[B]jk)2 - correction factor(s) = C21,k - correction factor(s).

There are only 3, perhaps 4 operators from which statistics (perhaps all of statistics) may be computed:

1/2(([A]Tij o [B]jk = i Cjk matrices (Half-Multiplier mode)

(where i = #rows in un-transposed matrix)

C(1/N([A]Tij o [B]jk) = 1/N[C]ik regular matrix multiplication.

R(1/N([A]Tij o [B]jk) = 1/N([B]jk[1]k,1o[A]Tij)

M(1/N([A]Tij o [B]jk) = 1/N([A]Tij[1]i,1o[B]jk)

QUANTUM STATISTICS:

[A]TMN[A]MN = [A]NM[A]MN = [A]2NN

Then we do the following:

1/N[DB1]iN [A]2NN[DB1]TiN

1/N[DB1]iN [A]2NN[DB1]Ni
 1/N[DB1]iN [A]2NN[DB1]Ni

=

=

 =

 [DB1]iN[DB1]TiN

 [DB1]iN[DB1]Ni

 [DB1]2ii

1/N[C]2ii

 [DB1]2ii
 QUANTUM MECHANICS FROM EINSTEIN’S EQUATION:

8(((T[T]jk(
[G]jk =

 (T (

c (Tjk[H]jk(jk

c(T([A]Tij o [H]jk)(
Ejk

or [E]jk =

 (T (

(T (
INVENTORY/ACCOUNTING SYSTEM:

[A]Tij o [B]jk = [C]jk =

[INV]ij[DB]jk = [SOL]ik This is the sum total of everything bought, sold, manufactured, etc.

i[A]Tij o [B]jk = i[C]jk =

i[INV]Tij o [DB]jk = i[AP]jk This keeps and individual item accounting of everything bought, sold, manufactured, etc. The superscript i just tells us which row in the un-transposed matrix we have hollow-dotted onto the [DB] matrix.
j[B]jk o [A]Tij = j[C]jk =
j[DB]jk o [INV]Tij = j[IP]jk This takes an individual item from the database matrix (a column) and multiplies it across the inventory(or accounting page if we wish) giving us a slice of the total pie, so to speak. It tells us how much of that item was used, by whom or what machine or smokestack, and shows how it is distributed throughout the total inventory.

[A]Tij o [B]jk = i, [C]jk sub-matrices .

[INV]Tij o [DB]jk = i, [SOL]jk sub-matrices

 This is the pure half-multiplier operation giving all the accountpage matrices, i of them, in a single operation.
TABLE OF CONTENTS

OPEN LETTER

Pg. 1

INTRODUCTION

Pg. 2

THE THEORY OF INFORMATION AND THE UNIFIED FIELD EQUATION

Pg. 11

PROOF FOR HALF-MULTIPLIER OPERATOR

Pg. 11

PROOF FOR REGULAR MATRIX MULTIPLICATION

Pg. 12

ROW PRODUCT OF A MATRIX

Pg. 17

MATRIC PRODUCT OF A MATRIX

Pg. 22

TRANSPOSE COMMUTIVITY OF THE HALF-MULTIPLIER OPERATOR

Pg. 26

NESTED ARRAYS

Pg. 27

ONTO MULTIPLICATION OF MATRICES

Pg. 30

THE UNIFIED FIELD EQUATION

Pg. 33

PHILOSOPHY

Pg. 36

GENERALIZED INVENTORY/ACCOUNTING SYSTEM

Pg. 40

CHEMICAL USAGE INVENTORY

Pg. 40

MULTIPLE CHEMICAL USAGE INVENTORY

Pg. 53

CALCULATION OF A WATER BILL

Pg. 60

TO BILL THE AREA, STATE, USA, WORLD

Pg. 65

TWO FACTOR MIXED DESIGN: REPEATED MEASURES ON ONE FACTOR FOR

STATISTICS AND ACCOUNTING/INVENTORY SYSTEMS (EXAMPLE)

Pg. 73

STATISTICAL ANALYSIS OF PROBLEM

Pg. 89

MATHCAD PROGRAM FOR INVENTORY STATISTICS

Pg. 94

PHILOSOPHICAL MEANING WHEN ([A]ijT o [B]jk = (

Pg. 98

EXAMPLE: COMPANY THAT MAKES SAUSAGE AND BOLOGNA

Pg. 99

ARGONIA, KS STORE RECIPIES

Pg. 119

LOVE BOX CO. INVENTORY

Pg. 127

MATRIX SOLUTION FOR GAUSSIAN REDUCTION

Pg. 133

SIMPLIFYIN’

Pg. 144

INVERSES

Pg. 145

SYMMETRY

Pg. 146

NESTED ARRAYS AND GAUSSIAN REDUCTION

Pg. 147

GENERAL MATRIX SOLUTION SETS FOR ½ H (AND (

Pg. 152

ELEMENTARY MOLECULAR ORBITAL METHODS

Pg. 154

ETHYLENE

Pg. 156

ACCOUNTING FOR OVERLAP INTERGAL

Pg. 157

BUTADIENE

Pg. 159

BOND ORDER, MOBILE BOND ORDER, TOTAL BOND ORDER AND FREE VALENCE INDEX
Pg. 162

EXAMPLE: TRIMETHYLENE METHANE

Pg. 162

MO’S AND NESTED ARRAYS

Pg. 166

CYCLOBUTADIENE

Pg. 167

OZONE

Pg. 169

UTILIZING SYMMETRY IN BUTADIENE

Pg. 173

COEFFICIENTS BY PROPERTIES OF NON-BONDING

MOLECULAR ORBITALS (NBMO’S)

Pg. 176

HETEROCYCLIC COMPOUNDS

Pg. 178

PERTUTBATION THEORY (SIMPLE)

Pg. 181

PART 2. PERTURBATION THEORY (COMPLETE)

Pg. 184

WAVE FUNCTION OF ACROLEIN FROM BUTADIENE

Pg. 185

SAME COMPUTATION USING THE HALF-MULTIPLIER OPERATOR

Pg. 188

COMPUTING (E

Pg. 193

THE PICTURE FUNCTION

Pg. 196

BOND ORDERS, FREE VALENCE INDEX AND CHARGE DENSITY FOR ACROLEIN

Pg. 197

BOND ORDER AND CHARGE DENSITY USING THE HALF-MULTIPLIER OPERATOR

Pg. 199

SECOND ORDER ENERGY CORRECTION

Pg. 201

HIGHER ORDER ENERGY CORRECTIONS

Pg. 202

MULTIPLE PERTURBATIONS

Pg. 205

BIBLIOGRAPHY

Pg. 211

STATISTICS

Pg. 211

THE MEAN

Pg. 212

STANDARD DEVIATION

Pg. 212

t-TEST FOR A DIFFERENCE BETWEEN A SAMPLE MEAN AND A

POPULATION MEAN

Pg. 213

t-TEST FOR THE DIFFERENCE BETWEEN TWO INDEPENDENT MEANS

Pg. 215

t-TEST FOR RELATED MEASURES

Pg. 219

SANDLERS A TEST

Pg. 221

ANALYSIS OF VARIANCE

Pg. 222

BASIC TRANSLATIONS FOR STATISTICS

Pg. 225

COMPLETELY RANDOMIZED DESIGN

Pg. 227

FACTORIAL DESIGN: TWO FACTORS

Pg. 234

FACTORIAL DESIGN: THREE FACTORS (COMPLETE ANALYSIS OF STATISTICAL METHOD
Pg. 240

WITH NESTED ARRAYS)

TREATMENT BY LEVELS DESIGN (WITH NESTED ARRAYS)

Pg. 269

TREATMENT BY SUBJECTS: REPEATED MEASURES DESIGN

Pg. 275

TREATMENT BY TREATMENT BY SUBJECTS, OR REPEATED MEASURES:

TWO FACTOR DESIGN

Pg. 275

TWO FACTOR MIXED DESIGN: REPEATED MEASURES ON ONE FACTOR

Pg. 284

THREE FACTOR MIXED DESIGN: REPEATED MEASURES ON ONE FACTOR

Pg. 292

THREE FACTOR MIXED DESIGN: REPEATED MEASURES ON TWO FACTORS

Pg. 305

LATIN SQUARE DESIGN: SIMPLE

Pg. 321

LATIN SQUARE DESIGN: COMPLEX

Pg. 330

TEST FOR DIFFERENCE BETWEEN VARIANCES OF TWO INDEPENDENT SAMPLES

(test for homogeneity of independent variances)

Pg. 346

TEST FOR DIFFERENCE BETWEEN VARIANCES OF TWO RELATED SAMPLES

(test for homogeneity of related variances)

Pg. 348

T-TEST FOR DIFFERENCES AMONG SEVERAL MEANS

Pg. 354

DUNCANS MULTIPLE RANGE TEST

Pg. 361

THE NEUMAN-KEUL’S MULTIPLE RANGE TEST

Pg. 363

THE TUKEY TEST

Pg. 365

SCHEFFES TEST

Pg. 367

DUNNETT’S TEST

Pg. 369

F-TESTS FOR SIMPLE EFFECTS

Pg. 370

Question 1

Pg. 370

Question 2

Pg. 371

Question 3

Pg. 376

USE OF ORTHOGONAL COMPONENTS IN TESTS FOR TREND

Pg. 382

EXAMPLE 2
(forgot example 1)

Pg. 390

EXAMPLE 3

Pg. 400

CORRELATION AND RELATED TOPICS

Pg. 400

PEARSON PRODUCT-MOMENT CORRELATION

Pg. 402

SPEARMAN RANK-ORDER CORRELATION (RHO ()

Pg. 403

KENDALL RANK-ORDER CORRELATION ((TAU)

Pg. 406

POINT-BISERIAL CORRELATION

Pg. 408

THE CORRELATION RATIO ((ETA)

Pg. 411

PARTIAL RANK-ORDER CORRELATION USING KENDALL’S TAU

Pg. 413

MULTIPLE CORRELATION: THREE VARIABLES

Pg. 414

SIMPLE ANALYSIS OF COVARIANCE: ONE TREATMENT VARIABLE

Pg. 416

FACTORIAL ANALYSIS OF COVARIANCE: TWO TREATMENT VARIABLES

Pg. 447

RELIABILITY OF MEASUREMENT: THE TEST AS A WHOLE

Pg. 448

TEST FOR DIFFERENCE BETWEEN INDEPENDENT CORRELATIONS

Pg. 449

TEST FOR DIFFERENCE BETWEEN DEPENDENT CORRELATIONS

Pg. 445

NON-PARAMETRIC TESTS, MISCELLANEOUS TESTS OF SIGNIFICANCE

AND INDEXES OF RELATIONSHIP

Pg. 453

TEST FOR SIGNIFICANCE OF A PROPORTION

Pg. 454

TEST FOR SIGNIFICANCE OF THE DIFFERENCE BETWEEN TWO PROPORTIONS

Pg. 454

THE MANN-WHITNEY U-TEST FOR DIFFERENCES BETWEEN INDEPENDENT SAMPLES

Pg. 458

WILCOXON A SIGN TEST FOR DIFFERENCES BETWEEN RELATED SAMPLES

Pg. 460

SIMPLE CHI SQUARE AND THE PHI COEFFICIENT

Pg. 461

COMPLEX CHI-SQUARE AND THE CONTINGENCY COEFFICIENT C

Pg. 463

QUANTUM STATISTICS

Pg. 466

LINEAR REGRESSION

Pg. 470

STRAIGHT LINE

Pg. 470

SEMI-LOG

Pg. 471

LOG-LOG

Pg. 473

PARABOLIC FIT

Pg. 474

CRYPTOGRAPHY

Pg. 475

PHYSICS 101

Pg. 484

OPEN LETTER

Twenty years ago (in 1978) I received a double degree in Chemistry and Mathematics at Fort Hays State University in Hays, KS. I had one mediocre job in the next three years and few interviews. In 1981 I returned to Fort Hays and completed my degree in Physics. After receiving my third Bachelors degree, I got no further interviews, much less jobs over the next 16 years. I had hoped to complete my Masters and PhD while I was working as my family was poor and I couldn’t afford graduate school on my own. Well, right now, I have forgotten everything I ever knew, except for some simple algebra, and do not consider myself fit to enter the job market as a scientist anymore. I have given up.

Before reading the following book, I will say I did take a course in Linear Algebra and had two chapters of Matrix theory in an applied math class I took. The only other class work I took concerning matrices was Quantum Mechanics I & II. So if some of my indical notation is incorrect, I beg your pardons as I had to develop most of the math on my own.

A note about the proofs, just to keep them short and simple, I have shown an example for a small matrix, then for the proof, I proved the theorems for M,N and M+1, N+1 matrices both at the same time. I could prove them both separately, but this book is too long as it is.

When I took some classes in physics in college, I was impressed by some of the derivations because the mathematics was pretty. In most cases the math was boring or utilitarian, but in some cases it was just intellectually beautiful. In the case of the Half-Multiplier Operator, the math is quite pretty. It is also seductive. Just when I thought I was through with a problem, the operator would show me a simpler, easier way to solve the problem. But just the fact that we can solve all parts of a problem in one operation instead of many separate, similar calculations is only one aspect of this equations beauty (see Sect. 2.3 and 2.4 in Statistics). We can solve everything all at the same time if the math is set up correctly. Also, even though I derived Classical Physics, Einstein’s First Field Equation for Gravity and Quantum Mechanics, most of this book covers the solution for the field equations for accounting/inventory systems and the field equations for statistics. The main reason is that I have forgotten all my physics, although there is some at the end of this book and some quantum mechanics is covered in the section on quantum chemistry. Anyway, you folks have already covered these equations extremely well but no one has ever done statistics and inventories this way. I think that even the calculus will fall easily under this operator. Another part of the beauty of these equations is that the mathematics, once completed, is automatically it’s own computer program.

For the separate book on statistics, you will need a copy of THE COMPUTATIONAL HANDBOOK OF STATISTICS, 2nd Edition by James L Bruning and B. L. Kintz , 2nd Edition, Scott Foresman and Co., Glenview, Ill. to be able to understand my approach (unless you’re a professional statistician). This is an example of the beauty of this operator. I have never taken a statistics class above the most elementary, yet with the Statistical Field Equation, even I was able to re-write the entire field of Statistics very easily and simply. In fact, I was writing the programs after just looking at the way the problem was done without having to solve the problem in the first place or see the mathematical equations. You people who were good enough in math to get a job and are working daily with it should have no problem with this book. The most advanced techniques are in the 9th grade level (Logs and simple algebra). Most of the math is simple addition, subtraction, multiplication and division.

I’ve sent copies of this book when it was in a much shorter form to various journals, but they refused to read it. They say it works, nothing’s wrong with it, they’ve never seen it before, but it is impossible to do math this way. Perhaps their feelings are the very reasons the Unified Field Equation was never discovered before. About 200 years ago, some mathematician said there was only one way to multiply a matrix and that notion has been accepted as gospel ever since. No one has ever looked to see if this idea was true or not. In this book you will see the first effort to explore matrices as they are meant to be used.

At present, I am working in a machine shop gluing cardboard boxes together. I am only able to afford to print 33 copies of this book. Please, if you cannot read this book, return it to me at Clint Holt, 1751 S. Battin, Wichita KS 67218. I will pay the postage. If you send in examples of how you solved problems using this operator, I’ll include them in my next copy and name the equations after you.

Well, I’ll let you get on with the reading of this book.

Sincerely,

Clinton L. Holt

The “Ugly Duckling”

2-22-1998

INTRODUCTION

A little over a year ago, while I was on lay-off status and unemployed, I occupied my time by trying to write a simple program so that I could perform elementary Molecular Orbital computations on my HP-48SX calculator. While I was working with Gaussian reduction to solve for the roots of the secular equations of simple organic molecules, I made a singular discovery. If I took every step I computed in a Gaussian reduction sequence and wrote each solution step in a series of columns and made these columns into a matrix, then transposed and multiplied this new matrix to the secular determinant, this matrix multiplication automatically carried out the Gaussian reduction of computing zeros in each position under the principal diagonal. By all accounts, what I had done was impossible as defined by the mathematics of today. I mean, I had been told since I was a senior in high school and by my professors all through college that we can multiply matrices only one way, that all other multiplications any other way have no meaning. I had also been told that there never has been a proof for Gaussian reduction. It is used to solve for systems of linear equations because it works, but has no other mathematical validity or use. What I had done by accident was to discover a proof for Gaussian reduction. What I also discovered, but did not know until later, was that this is the connection between our regular mathematics that we all know (addition, subtraction, multiplication and division) and tensors and matrices. What this means is that if

1, 2, 3,. . . (are numbers with all the properties mathematicians have discovered about numbers up to and including logarithms, calculus, trigonometry, differential equations, etc., that an mxn array of numbers can be considered to be a single number, not just an

array of separate numbers. In other words, a two by two matrix is not a matrix containing four separate numbers 1, 2, 3 and 4, but can be considered as a single number all by itself. To add, subtract, multiply and divide this number, all the other numbers we wish to operate on must be of the same size. To add 50 to 1, 50 can be considered as a one by one matrix and 1 is a one by one matrix, and we get [50] + [1] = [51]. We cannot add 1 to a number of a different size, i.e. [1] + [50 2] cannot be summed, but [1 -2] + [50 2] = [51 0] which can be summed. Let’s take two matrices with elements 1, 2, 3 and 4 and 5, 6, 7 and 8 respectively and see how their properties mimic our regular concept of mathematics. First we shall add the two numbers together and see that we add all four numbers at the same time to their counterparts in the second matrix in one operation.

[image: image1.wmf]=

1

3

2

4

5

7

6

8

6

10

8

12

Here we add 1+5 = 6, 2+6=8, 3+7=10 and 4+8=12 all at the same time. They are commutative under addition, i.e if we reverse the order of addition, we get the same answer:

[image: image2.wmf]=

5

7

6

8

1

3

2

4

6

10

8

12

Let’s now subtract the two numbers, and we will do it both ways:

[image: image3.wmf]=

5

7

6

8

1

3

2

4

4

4

4

4

[image: image4.wmf]=

1

3

2

4

5

7

6

8

4

4

4

4

Note that switching the order of subtraction changes the signs, so these two numbers are not in general commutative, but the absolute value of the solution would be commutative.

If we multiply the two matrices in the manner that is accepted by mathematics, we would proceed in the following manner:

[image: image5.wmf]=

.

1

3

2

4

5

7

6

8

19

43

22

50

To accomplish this, we proceed as follows: The top row in the first matrix is multiplied to the first column in the second matrix and the two products are added, i.e.

1x5 + 2x7 = 5+14 = 19. The first row is now multiplied to the second column in the second matrix and the sum of the products is places in the second top-hand position. 1x6 + 2x8 = 6+16=22. We have run out of columns in the second matrix to multiply [1 2] by, so now we go to the second row in the first matrix and multiply it to the first column in the second matrix: 3x5 + 4x7 = 15 + 28 = 43. This number is put in the first position in the second row. To finish up, we finally multiply the second row in the first matrix to the second column in the second matrix and sum their products. This solution is put in the second position in the bottom row of the solution matrix. 3x6 + 4x8 = 18 + 32 = 50. This sure doesn’t look like our regular multiplication that we are familiar with. If we multiply two numbers we should get a number we are familiar with. So now we get to the next step in our new definition of number. Mathematicians say this operation is illegal, that it doesn’t work and the results have no meaning, but we will look at it anyway.

I will define the operator (as meaning we will multiply the first number in the top row of the first matrix by the first number in the top row of the second matrix, the second number in the top row of the first matrix by the second number in the top row of the second matrix, the first number in the second row of the first matrix by the first number in the bottom row of the second matrix and the second number in the bottom row of the first matrix by the second number in the bottom row of the second matrix, i.e.

1 2 (
5 6
= 5 12

3 4
7 8
 21 32

This actually makes more sense since it is logical that 5x1=5, 6x2=12, 7x3=21 and 8x4=32. Although this form of multiplication cannot work and is impossible, it’s use is found throughout statistics, but in the examples I give in this book, I solve for the grand sum of squares in a way more acceptable to mathematicians (the grand sum of squares means that we square each number in the matrix and then add all the numbers together to obtain a single number. Although I did not really write it this way in my book, we could write the sum of squares more simply and elegantly as

[1]1i([A]ij([A]ij)[1]j1

To obtain the sum of squares for the second matrix above, we would compute it as follows:

Where

The arrow above the squared matrix is MathCad’s of saying we square each individual element in the matrix rather than squaring the matrix itself using regular matrix multiplication. So the grand sum is 25+36+49+64 = 174. (I use MathCad +6 as my computer’s math program, rather than Excel or Lotus or Quattro Pro spreadsheet because it can handle math better than these programs can.) This sum of squares is the correction factor in statistics. Note also that the (operation is commutative, just like in our regular mathematics i.e.

and

Finally we get to division, there is no way to divide a number by a matrix, so we have to multiply the matrix by an inverse to accomplish division, but on the one-to-one system as shown just above, we can divide matrices. Let’s divide the second matrix by the first.

or

and

The rightmost term under the arrow takes the inverse of each element in the 1, 2, 3, 4 matrix and multiplies it one-to-one to the 5,6,7,8 matrix (under the second, longer arrow). All computer programs are written using the inverse of matrices, so we must use their terminology to obtain the results we desire.

Let’s look at how the half-multiplier operation works using the two 4x4 matrices above. To half multiply the two matrices, we must first transpose the matrix containing the elements 1, 2, 3 and 4 and hollow dot multiply into the second matrix, i.e.

[image: image6.wmf]=

T

1

3

2

4

1

2

3

4

[image: image7.wmf]1

2

3

4

o[image: image8.wmf]5

7

6

8

=
[image: image9.wmf]1

2

o[image: image10.wmf]5

7

6

8

[image: image11.wmf]3

4

o[image: image12.wmf]5

7

6

8

[image: image13.wmf]1

2

 o[image: image14.wmf]5

7

6

8

[image: image15.wmf]3

4

[image: image16.wmf]o

[image: image17.wmf]5

7

6

8

= [image: image18.wmf].

1

5

.

2

7

.

1

6

.

2

8

 [image: image19.wmf].

3

5

.

4

7

.

3

6

.

4

8

= [image: image20.wmf]5

14

6

16

[image: image21.wmf]15

28

18

32

This is the multiplied matrix in half-multiplier mode. There are three ways to manipulate this data, actually there are four, we can leave the matrices as they are, or we can align the two matrices on top of each other and sum their rows:

[image: image22.wmf]=

.

(

)

1

1

5

14

6

16

19

22

(

)

[image: image23.wmf]=

.

(

)

1

1

15

28

18

32

43

50

(

)

Deleting the inner brackets we get

which is the solution for regular matrix multiplication.

[image: image24.wmf]19

43

22

50

Instead of adding the rows, let's add the columns of each of the 2 sub-matrices:

Deleting the inner brackets and combining the two column matrices into a 2x2 matrix we get:

[image: image25.wmf]=

.

5

14

6

16

1

1

11

30

[image: image26.wmf]=

.

15

28

18

32

1

1

33

60

=[image: image27.wmf]11

30

33

60

To solve this mathematically according to the proof, we sum the columns in the

5, 6, 7, 8 matrix and half-multiply into the 1, 2, 3, 4 matrix, i.e.

[image: image28.wmf]1

2

3

4

 o[image: image29.wmf]5

6

7

8

=[image: image30.wmf]11

15

 o[image: image31.wmf]1

2

3

4

=[image: image32.wmf]11

30

33

60

This is defined as the cross product of a matrix.

The next thing we can do is add the two sub-matrices together, i.e.

[image: image33.wmf]=

5

14

6

16

15

28

18

32

20

42

24

48

To solve this mathematically according to the proof, we sum the columns in the

1, 2, 3, 4 matrix and half-multiply into the 5, 6, 7, 8 matrix, i.e.

[image: image34.wmf]1

3

2

4

 o[image: image35.wmf]5

7

6

8

=[image: image36.wmf]4

6

 o[image: image37.wmf]5

7

6

8

=[image: image38.wmf].

4

5

.

6

7

.

4

6

.

6

8

=[image: image39.wmf]20

42

24

48

This is defined as the matric product of a matrix.

Three of the above four computations, although derived by using Gaussian Reduction, are illegal, or at least unknown to modern mathematics. Examples of their use will follow in this book.

Now that our concept of number has been more completely defined, I wish that other mathematicians and physicists would check on this work and see how it applies or does not apply to other problems in mathematics, especially statistics and calculus. I have derived Newton’s Equation and Einstein’s First Field Equation of Gravity, so this equation should hold through all of Physics, unless the field equations are wrong. It would especially be neat to see if the completion of these equations hold promise for ease in computation. Please do not say yea or nay in words, since I have the mathematical proofs, please prove mathematically that this does or does not work.

Before we get into the book proper, I will present a further tutorial on how this math is used.

TUTORIAL

The first thing we will do is sum the columns of the following matrix. The row matrix ONE is the operator which will sum the columns.

[image: image40.wmf]ONE

(

)

1

1

1

1

1

1

[image: image41.wmf]M

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

The problem looks like:

To sum the rows we post multiply by a column Matrix composed of ones equal to the number of columns in the

pre-multiplier Matrix. ie:

The problem for summing the rows looks like:

[image: image42.wmf]=

M

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

[image: image43.wmf]1

1

1

1

1

1

[image: image44.wmf]=

.

M

ONET

96

102

108

114

120

126

To multiply each row in a Matrix by a constant, proceed as follows:

 3 X
1 7 13 19 25 31

 4 X
2 8 14 20 26 32

 5 X
3 9 15 21 27 33 =

 6 X
4 10 16 22 28 34

 7 X
5 11 17 23 29 35

 8 X
6 12 18 24 30 36

[image: image45.wmf]N

3

4

5

6

7

8

Modern computer programs allow us to multiply in a one-to-one correspondence with two matrices, but none allow us to multiply in the manner of Gauss. This method has not been invented yet. Fortunately, there is an operation that can get us the same answer, but at the cost of more multiplication steps and computer memory. But we must do the math this way until programmers write more efficient programs. To do this, we must diagonalize the pre-multiplier matrix, in this example N:
[image: image46.wmf]O

diag

(

)

N

[image: image47.wmf]=

O

3

0

0

0

0

0

0

4

0

0

0

0

0

0

5

0

0

0

0

0

0

6

0

0

0

0

0

0

7

0

0

0

0

0

0

8

 M = [image: image48.wmf]1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

[image: image49.wmf]Then

[image: image50.wmf]=

.

O

M

3

8

15

24

35

48

21

32

45

60

77

96

39

56

75

96

119

144

57

80

105

132

161

192

75

104

135

168

203

240

93

128

165

204

245

288

To multiply the columns of the Matrix by the same constants, we post-multiply (instead of pre-multiplying) by the diagonal Matrix. ie:

[image: image51.wmf]=

.

M

O

3

6

9

12

15

18

28

32

36

40

44

48

65

70

75

80

85

90

114

120

126

132

138

144

175

182

189

196

203

210

248

256

264

272

280

288

ELEMENTARY STATISTICAL CALCULATIONS:

Suppose we want to add the first two numbers, the third and fourth numbers and the fifth and sixth numbers together and keep the solutions separate:

[image: image52.wmf]=

.

ONE

M

21

57

93

129

165

201

(

)

We can proceed as follows:

[image: image53.wmf](

)

21

57

93

129

165

201

[image: image54.wmf]=

21

57

78

[image: image55.wmf]=

93

129

222

[image: image56.wmf]=

165

201

366

Or we can set up a database matrix that will do the same multiplications all at the same time, i.e.
[image: image57.wmf]DB1

1

1

0

0

0

0

0

0

1

1

0

0

0

0

0

0

1

1

or
[image: image58.wmf]=

.

(

)

21

57

93

129

165

201

1

1

0

0

0

0

0

0

1

1

0

0

0

0

0

0

1

1

78

222

366

(

)

[image: image59.wmf]=

.

.

ONE

M

DB1

78

222

366

(

)

Suppose we want to add the first three numbers and the second three numbers and keep the solutions separate:

[image: image60.wmf]=

.

ONE

M

21

57

93

129

165

201

(

)

[image: image61.wmf]DB2

1

1

1

0

0

0

0

0

0

1

1

1

[image: image62.wmf]=

.

(

)

21

57

93

129

165

201

1

1

1

0

0

0

0

0

0

1

1

1

171

495

(

)

[image: image63.wmf]Then

[image: image64.wmf]=

.

.

ONE

M

DB2

171

495

(

)

Suppose we want to add the first and third numbers, the second and fourth numbers and the fifth and sixth numbers together:

[image: image65.wmf]DB3

1

0

1

0

0

0

0

1

0

1

0

0

0

0

0

0

1

1

[image: image66.wmf]=

.

(

)

21

57

93

129

165

201

1

0

1

0

0

0

0

1

0

1

0

0

0

0

0

0

1

1

114

186

366

(

)

[image: image67.wmf]THEN

[image: image68.wmf]=

.

.

ONE

M

DB3

114

186

366

(

)

An interesting problem is to take [1]8,8 and make a tic-tac-toe figure out of it. We may accomplish it in this manner:
[DB1]8,8[1]8,8 + [1]8,8[DB1]8,8
[image: image69.wmf]A

.

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

[image: image70.wmf]B

.

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

[image: image71.wmf]=

A

B

0

0

1

0

0

1

0

0

0

0

1

0

0

1

0

0

1

1

2

1

1

2

1

1

0

0

1

0

0

1

0

0

0

0

1

0

0

1

0

0

1

1

2

1

1

2

1

1

0

0

1

0

0

1

0

0

0

0

1

0

0

1

0

0

If we do not wish to have 2’s at the point’s of intersection but wish them to be ones, we may proceed as follows:
[DB1]8,8[1]8,8 + [1]8,8[DB1]8,8 - [DB1]8,8[1]8,8[DB1]8,8
[image: image72.wmf]C

.

.

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Suppose we wish to work only with the 4x4 array in the center of the [1]8,8 matrix. This may be accomplished as follows:

[image: image73.wmf]ONE88

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

[image: image74.wmf]D

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

[image: image75.wmf]EIGHT44

.

.

D

ONE88

D

[DB2]8,8[1]8,8[DB2]8,8
[image: image76.wmf].

.

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Suppose we wish to make an X through the matrix, we can go through the following transformation:

[image: image77.wmf]=

(

)

.

MAJORDIAG

ONE88

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

[image: image78.wmf]=

(

)

.

ONE88

MINORDIAG

0

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

0

The arrow above the multiplication means we multiply one-to-one rather than using regular matrix multiplication.

[image: image79.wmf]=

(

)

.

MAJORDIAG

ONE88

(

)

.

ONE88

MINORDIAG

1

0

0

0

0

0

0

1

0

1

0

0

0

0

1

0

0

0

1

0

0

1

0

0

0

0

0

1

1

0

0

0

0

0

0

1

1

0

0

0

0

0

1

0

0

1

0

0

0

1

0

0

0

0

1

0

1

0

0

0

0

0

0

1

Of course, we could just MAJORDIAG + MINORDIAG and get the same answer, but I’m trying to show how the math here works.

THE THEORY OF INFORMATION

AND

THE UNIFIED FIELD EQUATION

PROOF FOR THE HALF-MULTIPLIER OPERATOR

PROOF OF [A]T o [B]= diagonal(s)[A]T[B]

I must do this proof first, since I will need it to prove the rest of the math to follow.

Suppose we have the matrices:

A11
 B11. . . B1K. . . B1M. . . B1,M+1

 .
 .
 .

.
.

[A]T =
A1J
[B]= BJ1. . . BJK. . . BJM.. . .BJ,M+1

 .
 .
 .

.
.

A1N
 BN1. . . BNK. . . BNM. . . BN,M+1

 .
 .
 .

.
.

A1,N+1
 BN+1,1. . BN+1,K . .BN+1,M . .BN+1,M+1
Changing the pre-multiplier into a diagonal matrix and multiplying:

A11. . . 0. . . 0. . .0

 B11. . . B1K. . . B1M. . . B1,M+1
.

 .
 .
 .
 .

.

 .
 .
 .
 .

0. . . A1J. . . 0. . . 0

 BJ1. . . BJK. . . BJM.. . .BJ,M+1

.

 .
 .
 .
 .

.

 .
 .
 .
 .

0. . . 0. . . A1M. . .0

 BN1. . . BNK. . . BNM. . . BN,M+1
.

 .
 .
 .
 .

.

 .
 .
 .
 .

0. . . 0. . 0. . A1,M+1

 BN+1,1. . BN+1,K . .BN+1,M . .BN+1,M+1

We get the solution:

A11B11 . . .+. A11B1K .+. . .A11B1M .+. . . .A11B1,M+1

.
 .
 .
 .

.
 .
 .
 .

A1JBJ1 . . .+. A1JBJK .+. . .A1JBJM .+. . . .A1JBJ,M+1

.
 .
 .
 .

.
 .
 .
 .

A1MBN1 . . .+. A1MBNK .+. . .A1MBNM .+. . . .A1MBN,M+1

.
 .
 .
 .

.
 .
 .
 .

A1,M+1BN+1,1 .+. A1,M+1BN+1,K .+. A1,M+1BN+1,M .+. A1,M+1BN+1,M+1)

This proof is in thousands of textbooks from High school to college to PhD so I won’t prove it here.

Taking the pre-multiplier and multiplying each element across it’s corresponding row we get:

A11
 B11. . . B1K. . . B1M
.
 .
 .
 .

. o .
 .
 .

A1J
BJ1. . . BJK. . . BJM

.
 .
 .
 . =

A1M
 BN1. . . BNK. . . BNM.

A11(B11 . . .B1K . . .B1M)

A11B11 .+. A11B1K .+. A11B1M
.
. .
 .

.
 .
 .

.
. .
 .

.
 .
 .

A1J(BJ1 . . .BJK . . .BJM)

=
A1JBJ1 .+. A1JBJK .+. A1JBJM
.
. .
 .

.
 .
 .

.
. .
 .

.
 .
 .

A1M(BN1 . . .BNK . . . BNM)

A1MBN1 .+. A1MBNK .+. A1MBNM
This is for all mxn Matrices, now to prove it works for all matrices m+1, n+1 :

A11
 B11. . . B1K. . . B1M. . . B1,M+1
.
 .
 .
 .
 .

.
 .
 .
 .
 .

A1J
 BJ1. . . BJK. . . BJM.. . .BJ,M+1

. o
 .
 .
 .
 .
 =

.
 .
 .
 .
 .

A1M
 BN1. . . BNK. . . BNM. . . BN,M+1
.
 .
 .
 .
 .

.
 .
 .
 .
 .

A1,M+1
 BN+1,1. . BN+1,K . .BN+1,M . .BN+1,M+1

A11(B11 . . .B1K . . .B1M . . . B1,M+1)
A11B11 .+. A11B1K .+. A11B1M .+. A11B1,M+1
.
. .
 .
 .

.
 .
 .
 .

.
. .
 .
 .

.
 .
 .
 .

A1J(BJ1 . . .BJK . . .BJM. . . . BJ,M+1)

A1JBJ1 .+. A1JBJK .+. A1JBJM .+. A1JBJ,M+1

.
. .
 .
 .

.
 .
 .
 .

.
. .
 .
 .
 =
.
 .
 .
 .

A1M(BN1 . . .BNK . . . BNM . . . BN,M+1)

A1MBN1 .+. A1MBNK .+. A1MBNM .+. A1MBN,M+1

.
. .
 .
 .

.
 .
 .
 .

.
. .
 .
 .

.
 .
 .
 .

A1,M+1(BN+1,1. . .BN+1,K. . .BN+1,M. . . BN+1,M+1)
A1,M+1BN+1,1 .+. A1,M+1BN+1,K .+. A1,M+1BN+1,M .+. A1,M+1BN+1,M+1)

QED
PROOF #1: Regular matrix multiplication: [A]ij[B]jk = [C]ik .

[A]Tij o [B]jk = Cjk

First I will do a micro-proof for simplicity, then a regular proof.

A11 A21 A31
B11 B12 B13

A12 A22 A32 o
B21 B22 B23
=

A13 A23 A33
B31 B32 B33

A14 A24 A34
B41 B42 B43

Separating each column in the [A]T matrix into a column matrix, we cross multiply:

A11
B11 B12 B13
A21
B11 B12 B13
A31
B11 B12 B13

A12 o
B21 B22 B23
A22 o
B21 B22 B23
A32 o
B21 B22 B23

A13
B31 B32 B33
A23
B31 B32 B33
A33
B31 B32 B33

A14
B41 B42 B43
A24
B41 B42 B43
A34
B41 B42 B43

We take the first column in [A]T and multiply it straight across the [B]jk matrix. This operation is equivalent to diagonalizing the first column of [A]ij and multiplying across [B]. i.e.

[image: image80.wmf].

A

11

0

0

0

0

A

12

0

0

0

0

A

13

0

0

0

0

A

14

B

11

B

21

B

31

B

41

B

12

B

22

B

32

B

42

B

13

B

23

B

33

B

43

.

A

11

B

11

.

A

12

B

21

.

A

13

B

31

.

A

14

B

41

.

A

11

B

12

.

A

12

B

22

.

A

13

B

32

.

A

14

B

42

.

A

11

B

13

.

A

12

B

23

.

A

13

B

33

.

A

14

B

43

[image: image81.wmf].

A

21

0

0

0

0

A

22

0

0

0

0

A

23

0

0

0

0

A

24

B

11

B

21

B

31

B

41

B

12

B

22

B

32

B

42

B

13

B

23

B

33

B

43

.

A

21

B

11

.

A

22

B

21

.

A

23

B

31

.

A

24

B

41

.

A

21

B

12

.

A

22

B

22

.

A

23

B

32

.

A

24

B

42

.

A

21

B

13

.

A

22

B

23

.

A

23

B

33

.

A

24

B

43

[image: image82.wmf].

A

31

0

0

0

0

A

32

0

0

0

0

A

33

0

0

0

0

A

34

B

11

B

21

B

31

B

41

B

12

B

22

B

32

B

42

B

13

B

23

B

33

B

43

.

A

31

B

11

.

A

32

B

21

.

A

33

B

31

.

A

34

B

41

.

A

31

B

12

.

A

32

B

22

.

A

33

B

32

.

A

34

B

42

.

A

31

B

13

.

A

32

B

23

.

A

33

B

33

.

A

34

B

43

This is equal to:

[image: image83.wmf].

.

.

A

11

B

11

.

A

12

B

21

.

A

13

B

31

.

A

14

B

41

.

A

11

B

12

.

A

12

B

22

.

A

13

B

32

.

A

14

B

42

.

A

11

B

13

.

A

12

B

23

.

A

13

B

33

.

A

14

B

43

.

A

21

B

11

.

A

22

B

21

.

A

23

B

31

.

A

24

B

41

.

A

21

B

12

.

A

22

B

22

.

A

23

B

32

.

A

24

B

42

.

A

21

B

13

.

A

22

B

23

.

A

23

B

33

.

A

24

B

43

.

A

31

B

11

.

A

32

B

21

.

A

33

B

31

.

A

34

B

41

.

A

31

B

12

.

A

32

B

22

.

A

33

B

32

.

A

34

B

42

.

A

31

B

13

.

A

32

B

23

.

A

33

B

33

.

A

34

B

43

But this is a nested array, and I will show later that when we transpose a

nested array, only the matrices are transposed and not their elements. Since in Half-Multiplying we originally transposed the spreadsheet Matrix, we must now re-transpose the nested array back in it’s un-transposed state. Transposing the nested array also rids us of the three inner matrix brackets and makes the array into a regular array of dimensions 12x3. (of course, I have not proved this yet). i.e.

[image: image84.wmf].

A

11

B

11

.

A

12

B

21

.

A

13

B

31

.

A

14

B

41

.

A

11

B

12

.

A

12

B

22

.

A

13

B

32

.

A

14

B

42

.

A

11

B

13

.

A

12

B

23

.

A

13

B

33

.

A

14

B

43

[image: image85.wmf].

A

21

B

11

.

A

22

B

21

.

A

23

B

31

.

A

24

B

41

.

A

21

B

12

.

A

22

B

22

.

A

23

B

32

.

A

24

B

42

.

A

21

B

13

.

A

22

B

23

.

A

23

B

33

.

A

24

B

43

[image: image86.wmf].

A

31

B

11

.

A

32

B

21

.

A

33

B

31

.

A

34

B

41

.

A

31

B

12

.

A

32

B

22

.

A

33

B

32

.

A

34

B

42

.

A

31

B

13

.

A

32

B

23

.

A

33

B

33

.

A

34

B

43

Now we will sum the columns for each individual matrix: (we must remember that we are working with nested arrays, but computers are not programmed to handle these yet, so we must set up the pre-multiplier so that it operates on the individual sub-matrices)

[image: image87.wmf].

1

0

0

1

0

0

1

0

0

1

0

0

0

1

0

0

1

0

0

1

0

0

1

0

0

0

1

0

0

1

0

0

1

0

0

1

.

A

,

1

1

B

,

1

1

.

A

,

1

2

B

,

2

1

.

A

,

1

3

B

,

3

1

.

A

,

1

4

B

,

4

1

.

A

,

2

1

B

,

1

1

.

A

,

2

2

B

,

2

1

.

A

,

2

3

B

,

3

1

.

A

,

2

4

B

,

4

1

.

A

,

3

1

B

,

1

1

.

A

,

3

2

B

,

2

1

.

A

,

3

3

B

,

3

1

.

A

,

3

4

B

,

4

1

.

A

,

1

1

B

,

1

2

.

A

,

1

2

B

,

2

2

.

A

,

1

3

B

,

3

2

.

A

,

1

4

B

,

4

2

.

A

,

2

1

B

,

1

2

.

A

,

2

2

B

,

2

2

.

A

,

2

3

B

,

3

2

.

A

,

2

4

B

,

4

2

.

A

,

3

1

B

,

1

2

.

A

,

3

2

B

,

2

2

.

A

,

3

3

B

,

3

2

.

A

,

3

4

B

,

4

2

.

A

,

1

1

B

,

1

3

.

A

,

1

2

B

,

2

3

.

A

,

1

3

B

,

3

3

.

A

,

1

4

B

,

4

3

.

A

,

2

1

B

,

1

3

.

A

,

2

2

B

,

2

3

.

A

,

2

3

B

,

3

3

.

A

,

2

4

B

,

4

3

.

A

,

3

1

B

,

1

3

.

A

,

3

2

B

,

2

3

.

A

,

3

3

B

,

3

3

.

A

,

3

4

B

,

4

3

The answer to this is quite long on mathcad, but since we are working with nested arrays, we may also look at the multiplication in this manner:

[image: image88.wmf].

(

)

1

1

1

1

.

A

11

B

11

.

A

12

B

21

.

A

13

B

31

.

A

14

B

41

.

A

11

B

12

.

A

12

B

22

.

A

13

B

32

.

A

14

B

42

.

A

11

B

13

.

A

12

B

23

.

A

13

B

33

.

A

14

B

43

.

A

11

B

11

.

A

12

B

21

.

A

13

B

31

.

A

14

B

41

.

A

11

B

12

.

A

12

B

22

.

A

13

B

32

.

A

14

B

42

.

A

11

B

13

.

A

12

B

23

.

A

13

B

33

.

A

14

B

43

[image: image89.wmf].

(

)

1

1

1

1

.

A

21

B

11

.

A

22

B

21

.

A

23

B

31

.

A

24

B

41

.

A

21

B

12

.

A

22

B

22

.

A

23

B

32

.

A

24

B

42

.

A

21

B

13

.

A

22

B

23

.

A

23

B

33

.

A

24

B

43

.

A

21

B

11

.

A

22

B

21

.

A

23

B

31

.

A

24

B

41

.

A

21

B

12

.

A

22

B

22

.

A

23

B

32

.

A

24

B

42

.

A

21

B

13

.

A

22

B

23

.

A

23

B

33

.

A

24

B

43

[image: image90.wmf].

(

)

1

1

1

1

.

A

31

B

11

.

A

32

B

21

.

A

33

B

31

.

A

34

B

41

.

A

31

B

12

.

A

32

B

22

.

A

33

B

32

.

A

34

B

42

.

A

31

B

13

.

A

32

B

23

.

A

33

B

33

.

A

34

B

43

.

A

31

B

11

.

A

32

B

21

.

A

33

B

31

.

A

34

B

41

.

A

31

B

12

.

A

32

B

22

.

A

33

B

32

.

A

34

B

42

.

A

31

B

13

.

A

32

B

23

.

A

33

B

33

.

A

34

B

43

[image: image91.wmf].

A

11

B

11

.

A

12

B

21

.

A

13

B

31

.

A

14

B

41

.

A

11

B

12

.

A

12

B

22

.

A

13

B

32

.

A

14

B

42

.

A

11

B

13

.

A

12

B

23

.

A

13

B

33

.

A

14

B

43

[image: image92.wmf].

A

21

B

11

.

A

22

B

21

.

A

23

B

31

.

A

24

B

41

.

A

21

B

12

.

A

22

B

22

.

A

23

B

32

.

A

24

B

42

.

A

21

B

13

.

A

22

B

23

.

A

23

B

33

.

A

24

B

43

[image: image93.wmf].

A

31

B

11

.

A

32

B

21

.

A

33

B

31

.

A

34

B

41

.

A

31

B

12

.

A

32

B

22

.

A

33

B

32

.

A

34

B

42

.

A

31

B

13

.

A

32

B

23

.

A

33

B

33

.

A

34

B

43

But this is equal to:

[image: image94.wmf].

A

11

A

21

A

31

A

12

A

22

A

32

A

13

A

23

A

33

A

14

A

24

A

34

B

11

B

21

B

31

B

41

B

12

B

22

B

32

B

42

B

13

B

23

B

33

B

43

.

A

11

B

11

.

A

12

B

21

.

A

13

B

31

.

A

14

B

41

.

A

21

B

11

.

A

22

B

21

.

A

23

B

31

.

A

24

B

41

.

A

31

B

11

.

A

32

B

21

.

A

33

B

31

.

A

34

B

41

.

A

11

B

12

.

A

12

B

22

.

A

13

B

32

.

A

14

B

42

.

A

21

B

12

.

A

22

B

22

.

A

23

B

32

.

A

24

B

42

.

A

31

B

12

.

A

32

B

22

.

A

33

B

32

.

A

34

B

42

.

A

11

B

13

.

A

12

B

23

.

A

13

B

33

.

A

14

B

43

.

A

21

B

13

.

A

22

B

23

.

A

23

B

33

.

A

24

B

43

.

A

31

B

13

.

A

32

B

23

.

A

33

B

33

.

A

34

B

43

micro-QED

Generalized Proof

[image: image95.wmf].

A

11

A

I1

A

M1

A

,

M

1

1

A

1J

A

IJ

A

MJ

A

,

M

1

J

A

1N

A

IN

A

MN

A

,

M

1

N

A

,

1

N

1

A

,

I

N

1

A

,

M

N

1

A

,

M

1

N

1

B

11

B

J1

B

N1

B

,

N

1

1

B

1K

B

JK

B

NK

B

,

N

1

K

B

1M

B

JM

B

NM

B

,

N

1

M

B

,

1

M

1

B

,

J

M

1

B

,

N

M

1

B

,

N

1

M

1

I am going to have to type this in by hand, Word 7 doesn’t have the memory to handle the math here. The Solution for a regular MxN matrix multiplication is given by:

A11B11. .+ .A1JBJ1+. . . A1NBN1 A11B1K+. . . .A1JBjK. .+ . A1NBNK.

 .
 .
 .

 .
 .

.
 .
 .

 .
 .

Ai1B11. .+ .AiJBJ1+. . . AiNBN1

Ai1B1K+. . . .AiJBJK. + A1NBNK
.
 .
 .

 .
 .

.
 .
 .

 .
 .

AM1B11. .+ .AMJBJ1+. . . AMNBN1 AM1B1K+. . . .AMJBJK. + AiNBNK

A11B1M . + .A1JBJM . .+. A1NBNM A11B1M+1. .+.A1jBjM . . +.A1NBNM

 .
 .
 .

 .
. .

 .
 .
 .

 . . .

Ai1B1M . +. AiJBJM . .+..AiNBNM Ai1B1M+1. .+.AijBjM . . +.AiNBNM

 .
 .
 .
 .

 .
 .

 .
 .
 .
 .

 .
 .

AM1B1M . + .AMJBJM+. .+. AMNBNM AM1B1M. .+.AMjBjM. . .+.AMNBNM

Now we shall achieve the same answer by the properties of the half-multiplier operator. We shall first accomplish this by multiplying by the diagonal form for all matrices size MxN as this is the most familiar to mathematicians.

Diagonalizing the first transposed column (remember, for this to work, AiN must be transposed and we multiply across the Bnm matrix (Remember.to get our multiplied product o

A11

 B11. . .B1K. . .B1M

 .

 .
 .
 .

 .

 .
 .
 .

 A1J

 BJ1. . .BJK. . .BJM

 .

 .
 .
 .

 =

 .
 .
 .
 .

 A1N
 BN1. . .BNK. . .BNM

 A11(B11. . .B1K. . .B1M)

 .
 .
 .

 .
 .
 .

 A1J (BJ1. . .BJK. . .BJM)

 .
 .
 .

 =

 .
 .
 .

 A1N (BN1. . .BNK. . .BNM)

 A11B11. . .A11B1K. . .A11B1M

 .
 .
 .

 .
 .
 .

 A1J BJ1. . .A1JBJK. . .A1JBJM

 .
 .
 .

 .
 .
 .

 A1N BN1. . .A1NBNK. . .A1NBNM

Now for the i th column:

Ai1

 B11. . .B1K. . .B1M

Ai1(B11. . .B1K. . .B1M)

 .

 .
 .
 .

.
 .
 .

 .

 .
 .
 .

.
 .
 .

 AiJ

 BJ1. . .BJK. . .BJM

AiJ (BJ1. . .BJK. . .BJM) =

 .

 .
 .
 .

 =
.
 .
 .

 .
 .
 .
 .

.
 .
 .

 AiN
 BN1. . .BNK. . .BNM

AiN (BN1. . .BNK. . .BNM)

 Ai1B11. . .Ai1B1K. . .Ai1B1M

 .
 .
 .

 .
 .
 .

 AiJ BJ1. . .AiJBJK. . .AiJBJM

 .
 .
 .

 .
 .
 .

 AiN BN1. . .AiNBNK. . .AiNBNM

And now for the Mth column:

AM1

 B11. . .B1K. . .B1M

AM1(B11. . .B1K. . .B1M)

 .

 .
 .
 .

.
 .
 .

 .

 .
 .
 .

.
 .
 .

 AMJ

 BJ1. . .BJK. . .BJM

AMJ (BJ1. . .BJK. . .BJM) =

 .

 .
 .
 .

 =
.
 .
 .

 .
 .
 .
 .

.
 .
 .

 AMN
 BN1. . .BNK. . .BNM

AMN (BN1. . .BNK. . .BNM)

 AM1B11. . .AM1B1K. . .AM1B1M

 .
 .
 .

 .
 .
 .

 AMJ BJ1. . .AMJBJK. . .AMJBJM

 .
 .
 .

 .
 .
 .

 AMN BN1. . .AMNBNK. . .AMNBNM

Now let’s make these into a Nested array and sum each column of the individual sub-matrice

 A11B11. . .A11B1K. . .A11B1M

 .
 .
 .

 .
 .
 .

 A1J BJ1. . .A1JBJK. . .A1JBJM

 .
 .
 .

 .
 .
 .

 A1N BN1. . .A1NBNK. . .A1NBNM

 Ai1B11. . .Ai1B1K. . .Ai1B1M

 .
 .
 .

 .
 .
 .

 AiJ BJ1. . .AiJBJK. . .AiJBJM

 .
 .
 .

 .
 .
 .

 AiN BN1. . .AiNBNK. . .AiNBNM

 AM1B11. . .AM1B1K. . .AM1B1M

 .
 .
 .

 .
 .
 .

 AMJ BJ1. . .AMJBJK. . .AMJBJM

 .
 .
 .

 .
 .
 .

 AMN BN1. . .AMNBNK. . .AMNBNM

A11B11..+.. A1J BJ1..+.. A1N BN1
A11 B1K..+..A1JBJK..+.. A1NBNK
A11B1M..+.. A1JBJM..+..A1NBNM

Ai1B11..+.. AiJ BJ1..+.. AiN BN1
Ai1B1K..+..AiJBJK..+.. AiNBNK
Ai1B1M..+..AiJBJM..+.. AiNBNM
AM1B11..+.. AMJ BJ1 ..+..AMN BN1
AM1B1K..+.. AMJBJK..+.. AMNBNK
AM1B1M..+.. AMJBJM..+..AMNBNM

 Now let’s do the same for all M+1, N+1 Matrices:

A11

 B11. . .B1K. . .B1M. . .B1,M+1

 .

 .
 .
 .
 .

 .

 .
 .
 .
 .

 Ai1

 BJ1. . .BJK. . .BJM. . .BJ,M+1

 .

 .
 .
 .
 .
 =

 .
 .
 .
 .
 .

 A1N
 BN1. . .BNK. . .BNM. . .BN,M+1

 .
 .
 .
 .
 .

 .
 .
 .
 .
 .

 A1,M+1 BN+1,1
. .BN+1,K
. .BN+1,M. .BN+1,M+1

A11 (B11. . .B1K. . .B1M. . .B1,M+1)
 A11 B11. . . A11B1K. . . A11B1M. . . A11B1,M+1

. .
 .
 .
 .

 . .

.
 .
 .

. .
 .
 .
 .

 . .

.
 .
 .

AiJ (BJ1. . .BJK. . .BJM. . .BJ,M+1)
 AiJ BJ1. . . AiJ BJK. . . AiJ BJM. . . AiJ BJ,M+1

. .
 .
 .
 .
 = . .

.
 .
 .

. .
 .
 .
 .

 . .

.
 .
 .

A1N (BN1. . .BNK. . .BNM. . .BN,M+1)
 A1N BN1. . . A1N BNK. . . A1N BNM. . . A1N BN,M+1

. .
 .
 .
 .

 . .

.
 .
 .

. .
 .
 .
 .

 . .

.
 .
 .

A1,N+1 (BN+1,1. .BN+1,K. .BN+1,M. .BN+1,M+1)
 A1,N+1BN+1,1. . A1,N+1BN+1,K. . A1,N+1BN+1,M. . A1,N+1BN+1,M+1
The summed columns are equal to:

[A11B11. .+ .AiJBJ1+. . . A1NBN1 + A1,N+1BN+1,1] [A11B1K+. . . .AiJBJK. .+ . A1NBNK + A1,N+1BN+1,K]

 A11B1M . + .AiJBJM+. .+. A1NBNM + . A1,N+1BN+1,M] [A11B1,M+1. .+.AijBj,M+1. .+.A1NBN,M+1 + A1,N+1BN+1,M+1]

Now we multiply by the Jth column:

Ai1

 B11. . .B1K. . .B1M. . .B1,M+1

 .

 .
 .
 .
 .

 .

 .
 .
 .
 .

 AiJ

 BJ1. . .BJK. . .BJM. . .BJ,M+1

 .

 .
 .
 .
 .
 =

 .
 .
 .
 .
 .

 A1N
 BN1. . .BNK. . .BNM. . .BN,M+1

 .
 .
 .
 .
 .

 .
 .
 .
 .
 .

 A1,N+1 BN+1,1
. .BN+1,K
. .BN+1,M. .BN+1,M+1

Ai1 (B11. . .B1K. . .B1M. . .B1,M+1)
 Ai1B11. . . Ai1B1K. . . Ai1B1M. . . Ai1B1,M+1

. .
 .
 .
 .

 . .

.
 .
 .

. .
 .
 .
 .

 . .

.
 .
 .

AiJ (BJ1. . .BJK. . .BJM. . .BJ,M+1)
 AiJ BJ1. . . AiJBJK. . . AiJBJM. . . AiJBJ,M+1

. .
 .
 .
 .
 = . .

.
 .
 .

. .
 .
 .
 .

 . .

.
 .
 .

AiN (BN1. . .BNK. . .BNM. . .BN,M+1)
 AiN BN1. . . AiN BNK. . .AiN BNM. . . AiN BN,M+1

. .
 .
 .
 .

 . .

.
 .
 .

. .
 .
 .
 .

 . .

.
 .
 .

Ai,N+1 (BN+1,1. .BN+1,K. .BN+1,M. .BN+1,M+1)
 Ai,N+1 BN+1,1. . Ai,N+1 BN+1,K. . Ai,N+1 BN+1,M. . Ai,N+1 BN+1,M+1
Summing the columns we get:

[Ai1B11. .+ .AiJBJ1+. . . AiNBN1 + Ai,N+1BN+1,1] [Ai1B1K+. . .AiJBJK. .+ . AiNBNK + Ai,N+1BN+1,K]

 [Ai1B1M . +. AiJBJM . .+..AiNBNM + . Ai,N+1BN+1,M] [Ai1B1M+1. .+.AijBjM+1 . . +.AiNBNM+1 + Ai,N+1BN+1,M+1]

Now we multiply by the Mth column:

AM1

 B11. . .B1K. . .B1M. . .B1,M+1

 .

 .
 .
 .
 .

 .

 .
 .
 .
 .

 AMJ

 BJ1. . .BJK. . .BJM. . .BJ,M+1

 .

 .
 .
 .
 .
 =

 .
 .
 .
 .
 .

 AMN
 BN1. . .BNK. . .BNM. . .BN,M+1

 .
 .
 .
 .
 .

 .
 .
 .
 .
 .

 AM,N+1 BN+1,1
. .BN+1,K
. .BN+1,M. .BN+1,M+1

AM1 (B11. . .B1K. . .B1M. . .B1,M+1)
 AM1B11. . . AM1B1K. . .
AM1B1M. . . AM1B1,M+1

. .
 .
 .
 .

 . .

.
 .
 .

. .
 .
 .
 .

 . .

.
 .
 .

AMJ (BJ1. . .BJK. . .BJM. . .BJ,M+1)
 AMJBJ1. . . AMJBJK. . .
AMJBJM. . . AMJBJ,M+1

. .
 .
 .
 .
 = . .

.
 .
 .

. .
 .
 .
 .

 . .

.
 .
 .

AMN (BN1. . .BNK. . .BNM. . .BN,M+1)
 AMNBN1. . . AMNBNK. .
AMNBNM. . . AMNBN,M+1

. .
 .
 .
 .

 . .

.
 .
 .

. .
 .
 .
 .

 . .

.
 .
 .

AM,N+1 (BN+1,1. .BN+1,K. .BN+1,M. .BN+1,M+1)
 AM,N+1BN+1,1. . AM,N+1BN+1,K. . AM,N+1BN+1,M. . AM,N+1BN+1,M+1
Summing the columns we get:

[AM1B11. .+..AMJBJ1+. . . AMNBN1..+..AM,N+1BN+1,1] [AM1B1K..+. .AMJBJK. .+. . AMNBNK..+.. AM,N+1BN+1,K]

 [AM1B1M..+..AMJBJM+. .+. AMNBNM..+..AM,N+1BN+1,M] [AM1B1,M+1. .+..AMJBJ,M+1..+..AMNBN,M+1 +..AM,N+1BN+1,M+1]

And finally we multiply by the M+1 th column:

AM+1,1

 B11. . .B1K. . .B1M. . .B1,M+1

 .

 .
 .
 .
 .

 .

 .
 .
 .
 .

 AM+1,J
 BJ1. . .BJK. . .BJM. . .BJ,M+1

 .

 .
 .
 .
 .
 =

 .
 .
 .
 .
 .

 AM+1,N
 BN1. . .BNK. . .BNM. . .BN,M+1

 .
 .
 .
 .
 .

 .
 .
 .
 .
 .

 AM+1,N+1 BN+1,1
. .BN+1,K
. .BN+1,M. .BN+1,M+1

AM+1,1 (B11. . .B1K. . .B1M. . .B1,M+1)
 AM+1,1B11. AM+1,1B1K. . AM+1,1B1M. . AM+1,1B1,M+1

. .
 .
 .
 .

 . .

.
 .
 .

. .
 .
 .
 .

 . .

.
 .
 .

AM+1,J (BJ1. . .BJK. . .BJM. . .BJ,M+1)
 AM+1,JBJ1
 .AM+1,J BJK. AM+1,J BJM. . AM+1,J BJ,M+1

. .
 .
 .
 .
 = . .

.
 .
 .

. .
 .
 .
 .

 . .

.
 .
 .

AM+1,N (BN1. . .BNK. . .BNM. . .BN,M+1)
 AM+1,NBN1
 .AM+1,NBNK. . AM+1,NBNM. . AM+1,N BN,M+1

. .
 .
 .
 .

 . .

.
 .
 .

. .
 .
 .
 .

 . .

.
 .
 .

AM+1,N+1 (BN+1,1. .BN+1,K. .BN+1,M. .BN+1,M+1)
 AM+1,N+1BN+1,1. AM+1,N+1BN+1,K. AM+1,N+1BN+1,M. AM+1,N+1BN+1,M+1
[AM+1,1B11.+ .AM+1,JBJ1+. . . AM+1,NBN,1 + AM+1,N+1BN+1,1] [AM+1,1B1K+..AM+1,JBJK.+ . AM+1,NBNK + AM+1,N+1BN+1,K]

AM+1,1B1M + .AM+1,JBJM. +. AM+1,NBNM + AM+1,,N+1BN+1,M] [AM+1,1B1,M+1.+.AM+1,JBJ,M+1.+..AM+1,NBN,M+1 + AM+1,N+1BN+1,M+1]

Transposing them (Stacking the nested arrays on top of each other we get):

Note: When we first half-multiply, we transpose the Pre-multiplier matrix. In order to get our regular matrix multiplication results we have to re-transpose the nested arrays, then sum their columns. Wo could sum the columns then transpose also.

 A11 B11. . . A11B1K. . . A11B1M. . . A11B1,M+1

 . .

.
 .
 .

 . .

.
 .
 .

 AiJ BJ1. . . AiJ BJK. . . AiJ BJM. . . AiJ BJ,M+1

 . .

.
 .
 .

 . .

.
 .
 .

 A1N BN1. . . A1N BNK. . . A1N BNM. . . A1N BN,M+1

 . .

.
 .
 .

 . .

.
 .
 .

 A1,N+1BN+1,1. . A1,N+1BN+1,K. . A1,N+1BN+1,M. . A1,N+1BN+1,M+1

 Ai1B11. . . Ai1B1K. . . Ai1B1M. . . Ai1B1,M+1

 . .

.
 .
 .

 . .

.
 .
 .

 AiJ BJ1. . . AiJBJK. . . AiJBJM. . . AiJBJ,M+1

 . .

.
 .
 .

 . .

.
 .
 .

 AiN BN1. . . AiN BNK. . .AiN BNM. . . AiN BN,M+1

 . .

.
 .
 .

 . .

.
 .
 .

 Ai,N+1 BN+1,1. . Ai,N+1 BN+1,K. . Ai,N+1 BN+1,M. . Ai,N+1 BN+1,M+1

 AM1B11. . . AM1B1K. . .
AM1B1M. . . AM1B1,M+1

 . .

.
 .
 .

 . .

.
 .
 .

 AMJBJ1. . . AMJBJK. . .
AMJBJM. . . AMJBJ,M+1

 . .

.
 .
 .

 . .

.
 .
 .

 AMNBN1. . . AMNBNK. .
AMNBNM. . . AMNBN,M+1

 . .

.
 .
 .

 . .

.
 .
 .

 AM,N+1BN+1,1. . AM,N+1BN+1,K. . AM,N+1BN+1,M. . AM,N+1BN+1,M+1

 AM+1,1B11. AM+1,1B1K. . AM+1,1B1M. . AM+1,1B1,M+1

 . .

.
 .
 .

 . .

.
 .
 .

 AM+1,JBJ1
 .AM+1,J BJK. AM+1,J BJM. . AM+1,J BJ,M+1

 . .

.
 .
 .

 . .

.
 .
 .

 AM+1,NBN1
 .AM+1,NBNK. . AM+1,NBNM. . AM+1,N BN,M+1

 . .

.
 .
 .

 . .

.
 .
 .

 AM+1,N+1BN+1,1. AM+1,N+1BN+1,K. AM+1,N+1BN+1,M. AM+1,N+1BN+1,M+1
Summing the columns in each sub-matrix we get:

[A11B11. .+ .AiJBJ1+. . . A1NBN1 + A1,N+1BN+1,1] [A11B1K+. . . .AiJBJK. .+ . A1NBNK + A1,N+1BN+1,K]

 A11B1M . + .AiJBJM+. .+. A1NBNM + . A1,N+1BN+1,M] [A11B1,M+1. .+.AijBj,M+1. .+.A1NBN,M+1 + A1,N+1BN+1,M+1]

[Ai1B11. .+ .AiJBJ1+. . . AiNBN1 + Ai,N+1BN+1,1] [Ai1B1K+. . .AiJBJK. .+ . AiNBNK + Ai,N+1BN+1,K]

 [Ai1B1M . +. AiJBJM . .+..AiNBNM + . Ai,N+1BN+1,M] [Ai1B1M+1. .+.AijBjM+1 . . +.AiNBNM+1 + Ai,N+1BN+1,M+1]

[AM1B11. .+..AMJBJ1+. . . AMNBN1..+..AM,N+1BN+1,1] [AM1B1K..+. .AMJBJK. .+. . AMNBNK..+.. AM,N+1BN+1,K]

 [AM1B1M..+..AMJBJM+. .+. AMNBNM..+..AM,N+1BN+1,M] [AM1B1,M+1. .+..AMJBJ,M+1..+..AMNBN,M+1 +..AM,N+1BN+1,M+1]

[AM+1,1B11.+ .AM+1,JBJ1+. . . AM+1,NBN,1 + AM+1,N+1BN+1,1] [AM+1,1B1K+..AM+1,JBJK.+ . AM+1,NBNK + AM+1,N+1BN+1,K]

AM+1,1B1M + .AM+1,JBJM. +. AM+1,NBNM + AM+1,,N+1BN+1,M] [AM+1,1B1,M+1.+.AM+1,JBJ,M+1.+..AM+1,NBN,M+1 + AM+1,N+1BN+1,M+1]

Separating them from each other we get:

A11B11. .+ .A1JBJ1+. . . A1NBN1 + A1,N+1BN+1,1 A11B1K+. . . .A1JBjK. .+ . A1NBNK + A1,N+1BN+1,K . .

 .
 .
 .
 .

 .
 .
 .
.
.

.
 .
 .
 .

 .
 .
 .
.
.

Ai1B11. .+ .AiJBJ1+. . . AiNBN1 + Ai,N+1BN+1,1 Ai1B1K+. . . .AiJBJK. .+ . AiNBNK + Ai,N+1BN+1,K
.
 .
 .
 .

 .
 .
 .
.
.

.
 .
 .
 .

 .
 .
 .
.
.

AM1B11. .+ .AMJBJ1+. . . AMNBN1 + AM,N+1BN+1,1 AM1B1K+. . . .AMJBJK. .+ . AMNBNK + AM,N+1BN+1,K
.
 .
 .
 .

 .
 .
 .

.
 .
 .
 .

 .
 .
 .

AM+1,1B11.+ .AM+1,JBJ1+. . . AM+1,NBN+1 + AM+1,N+1BN+1,1 AM+1,1B1K+. . .AM+1,JBJK.+ . AM+1,NBNK + AM+1,N+1BN+1,K

A11B1M . + .A1JBJM . .+. A1NBNM + . A1,N+1BN+1,M A11B1M+1. .+.A1jBjM+1 . . +.A1NBNM+1 + A1,N+1BN+1,M+1

 .
 .
 .
 .

 .
 .
 .
 .

 .
 .
 .
 .

 .
 .
 .
 .

Ai1B1M . +. AiJBJM . .+..AiNBNM + . Ai,N+1BN+1,M Ai1B1M+1. .+.AijBjM+1 . . +.AiNBNM+1 + Ai,N+1BN+1,M+1

 .
 .
 .
 .

 .
 .
 .
 .

 .
 .
 .
 .

 .
 .
 .
 .

AM1B1M . + .AMJBJM+. .+. AMNBNM + . AM,N+1BN+1,M AM1B1M+1. .+.AMjBjM+1. . .+.AMNBNM+1 + AM,N+1BN+1,M+1

 .
 .
 .
 .

 .
 .
 .
 .

 .
 .
 .
 .

 .
 .
 .
 .

AM+1,1B1M + .AM+1,JBJM. +. AM+1,NBNM + AM+1,,N+1BN+1,M
AM+1,1B1M+1.+.AM+1,JBJ,M+1.+..AM+1,NBN,M+1 + AM+1,N+1BN+1,M+1
Which is the solution for regular Matrix Multiplication.

QED
Now we will achieve the same results using the Half-Multiplier Operator (we proved the top portion with diagonals, here we will use the Half-Multiplier Operator:

First we will prove for all matrices sized MxN:

 A11
 B11. . .B1K. . .B1M

 .
 .
 .
 .

 .
 .
 .
 .

 A1J o
 BJ1. . .BJK. . .BJM =

 .
 .
 .
 .

 .
 .
 .
 .

 A1N
 BN1. . .BNK. . .BNM

 A11(B11. . .B1K. . .B1M)

 .
 .
 .

 .
 .
 .

 A1J (BJ1. . .BJK. . .BJM)

 .
 .
 .

 =

 .
 .
 .

 A1N (BN1. . .BNK. . .BNM)

 A11B11. . .A11B1K. . .A11B1M

 .
 .
 .

 .
 .
 .

 A1J BJ1. . .A1JBJK. . .A1JBJM

 .
 .
 .

 .
 .
 .

 A1N BN1. . .A1NBNK. . .A1NBNM

Now for the i th column:

Ai1
 B11. . .B1K. . .B1M

Ai1(B11. . .B1K. . .B1M)

.
 .
 .
 .

.
 .
 .

. o
 .
 .
 .

.
 .
 .

AiJ
 BJ1. . .BJK. . .BJM
 =

AiJ (BJ1. . .BJK. . .BJM) =

.
 .
 .
 .

.
 .
 .

.
 .
 .
 .

.
 .
 .

AiN
 BN1. . .BNK. . .BNM

AiN (BN1. . .BNK. . .BNM)

 Ai1B11. . .Ai1B1K. . .Ai1B1M

 .
 .
 .

 .
 .
 .

 AiJ BJ1. . .AiJBJK. . .AiJBJM

 .
 .
 .

 .
 .
 .

 AiN BN1. . .AiNBNK. . .AiNBNM

And now for the Mth column:

AM1
B11. . .B1K. . .B1M

AM1(B11. . .B1K. . .B1M)

.
.
.
.

.
 .
 .

.
.
.
.

.
 .
 .

AMJ o
BJ1. . .BJK. . .BJM

=
AMJ (BJ1. . .BJK. . .BJM) =

.
.
.
.

.
 .
 .

.
.
.
.

.
 .
 .

AMN
BN1. . .BNK. . .BNM

AMN (BN1. . .BNK. . .BNM)

 AM1B11. . .AM1B1K. . .AM1B1M

 .
 .
 .

 .
 .
 .

 AMJ BJ1. . .AMJBJK. . .AMJBJM

 .
 .
 .

 .
 .
 .

 AMN BN1. . .AMNBNK. . .AMNBNM

Now let’s make these into a Nested array and sum each column of the individual sub-matrices:

 A11B11. . .A11B1K. . .A11B1M

 .
 .
 .

 .
 .
 .

 A1J BJ1. . .A1JBJK. . .A1JBJM

 .
 .
 .

 .
 .
 .

 A1N BN1. . .A1NBNK. . .A1NBNM

 Ai1B11. . .Ai1B1K. . .Ai1B1M

 .
 .
 .

 .
 .
 .

 AiJ BJ1. . .AiJBJK. . .AiJBJM

 .
 .
 .

 .
 .
 .

 AiN BN1. . .AiNBNK. . .AiNBNM

 AM1B11. . .AM1B1K. . .AM1B1M

 .
 .
 .

 .
 .
 .

 AMJ BJ1. . .AMJBJK. . .AMJBJM

 .
 .
 .

 .
 .
 .

 AMN BN1. . .AMNBNK. . .AMNBNM

Summing the columns we get:

A11B11..+.. A1J BJ1..+.. A1N BN1
A11 B1K..+..A1JBJK..+.. A1NBNK
A11B1M..+.. A1JBJM..+..A1NBNM

Ai1B11..+.. AiJ BJ1..+.. AiN BN1
Ai1B1K..+..AiJBJK..+.. AiNBNK
Ai1B1M..+..AiJBJM..+.. AiNBNM
AM1B11..+.. AMJ BJ1 ..+..AMN BN1
AM1B1K..+.. AMJBJK..+.. AMNBNK
AM1B1M..+.. AMJBJM..+..AMNBNM

Which is true for all MxN Matrices, now to prove it is true for all Matrices M+1, N+1

 A11
 B11. . .B1K. . .B1M. . .B1,M+1

 .
 .
 .
 .
 .

 .
 .
 .
 .
 .

 Aij
 BJ1. . .BJK. . .BJM. . .BJ,M+1

 .
 o .
 .
 .
 .
 =

 .
 .
 .
 .
 .

 A1N
 BN1. . .BNK. . .BNM. . .BN,M+1

 .
 .
 .
 .
 .

 .
 .
 .
 .
 .

 A1,N+1 BN+1,1. .BN+1,K. .BN+1,M. .BN+1,M+1

A11 (B11. . .B1K. . .B1M. . .B1,M+1)
 A11 B11. . . A11B1K. . . A11B1M. . . A11B1,M+1

. .
 .
 .
 .

 . .

.
 .
 .

. .
 .
 .
 .

 . .

.
 .
 .

AiJ (BJ1. . .BJK. . .BJM. . .BJ,M+1)
 AiJ BJ1. . . AiJ BJK. . . AiJ BJM. . . AiJ BJ,M+1

. .
 .
 .
 .
 = . .

.
 .
 .

. .
 .
 .
 .

 . .

.
 .
 .

A1N (BN1. . .BNK. . .BNM. . .BN,M+1)
 A1N BN1. . . A1N BNK. . . A1N BNM. . . A1N BN,M+1

. .
 .
 .
 .

 . .

.
 .
 .

. .
 .
 .
 .

 . .

.
 .
 .

A1,N+1 (BN+1,1. .BN+1,K. .BN+1,M. .BN+1,M+1)
 A1,N+1BN+1,1. . A1,N+1BN+1,K. . A1,N+1BN+1,M. . A1,N+1BN+1,M+1
The summed columns are equal to:

[A11B11. .+ .AiJBJ1+. . . A1NBN1 + A1,N+1BN+1,1] [A11B1K+. . . .AiJBJK. .+ . A1NBNK + A1,N+1BN+1,K]

 A11B1M . + .AiJBJM+. .+. A1NBNM + . A1,N+1BN+1,M] [A11B1,M+1. .+.AijBj,M+1. .+.A1NBN,M+1 + A1,N+1BN+1,M+1]

Ai1
 B11. . .B1K. . .B1M. . .B1,M+1

.
 .
 .
 .
 .

.
 .
 .
 .
 .

AiJ
 BJ1. . .BJK. . .BJM. . .BJ,M+1

.
 o .
 .
 .
 .
 =

.
 .
 .
 .
 .

AiN
 BN1. . .BNK. . .BNM. . .BN,M+1

.
 .
 .
 .
 .

.
 .
 .
 .
 .

Ai,N+1
 BN+1,1
. .BN+1,K
. .BN+1,M. .BN+1,M+1+

Ai1 (B11. . .B1K. . .B1M. . .B1,M+1)
 Ai1B11. . . Ai1B1K. . . Ai1B1M. . . Ai1B1,M+1

. .
 .
 .
 .

 . .

.
 .
 .

. .
 .
 .
 .

 . .

.
 .
 .

AiJ (BJ1. . .BJK. . .BJM. . .BJ,M+1)
 AiJ BJ1. . . AiJBJK. . . AiJBJM. . . AiJBJ,M+1

. .
 .
 .
 .
 = . .

.
 .
 .

. .
 .
 .
 .

 . .

.
 .
 .

AiN (BN1. . .BNK. . .BNM. . .BN,M+1)
 AiN BN1. . . AiN BNK. . .AiN BNM. . . AiN BN,M+1

. .
 .
 .
 .

 . .

.
 .
 .

. .
 .
 .
 .

 . .

.
 .
 .

Ai,N+1 (BN+1,1. .BN+1,K. .BN+1,M. .BN+1,M+1)
 Ai,N+1 BN+1,1. . Ai,N+1 BN+1,K. . Ai,N+1 BN+1,M. . Ai,N+1 BN+1,M+1
Summing the columns we get:

[Ai1B11. .+ .AiJBJ1+. . . AiNBN1 + Ai,N+1BN+1,1] [Ai1B1K+. . .AiJBJK. .+ . AiNBNK + Ai,N+1BN+1,K]

 [Ai1B1M . +. AiJBJM . .+..AiNBNM + . Ai,N+1BN+1,M] [Ai1B1,M+1. .+.AijBj,M+1 . +.AiNBN,M+1 + Ai,N+1BN+1,M+1]

AM1
 B11. . .B1K. . .B1M. . .B1,M+1

.
 .
 .
 .
 .

.
 .
 .
 .
 .

AMJ
 BJ1. . .BJK. . .BJM. . .BJ,M+1

.
 o .
 .
 .
 .
 =

.
 .
 .
 .
 .

AMN
 BN1. . .BNK. . .BNM. . .BN,M+1

.
 .
 .
 .
 .

.
 .
 .
 .
 .

 AM,N+1 BN+1,1
. .BN+1,K
. .BN+1,M. .BN+1,M+1

AM1 (B11. . .B1K. . .B1M. . .B1,M+1)
 AM1B11. . . AM1B1K. . .
AM1B1M. . . AM1B1,M+1

. .
 .
 .
 .

 . .

.
 .
 .

. .
 .
 .
 .

 . .

.
 .
 .

AMJ (BJ1. . .BJK. . .BJM. . .BJ,M+1)
 AMJBJ1. . . AMJBJK. . .
AMJBJM. . . AMJBJ,M+1

. .
 .
 .
 .
 = . .

.
 .
 .

. .
 .
 .
 .

 . .

.
 .
 .

AMN (BN1. . .BNK. . .BNM. . .BN,M+1)
 AMNBN1. . . AMNBNK. .
AMNBNM. . . AMNBN,M+1

. .
 .
 .
 .

 . .

.
 .
 .

. .
 .
 .
 .

 . .

.
 .
 .

AM,N+1 (BN+1,1. .BN+1,K. .BN+1,M. .BN+1,M+1)
 AM,N+1BN+1,1. . AM,N+1BN+1,K. . AM,N+1BN+1,M. . AM,N+1BN+1,M+1
Summing the columns we get:

[AM1B11. .+..AMJBJ1+. . . AMNBN1..+..AM,N+1BN+1,1] [AM1B1K..+. .AMJBJK. .+. . AMNBNK..+.. AM,N+1BN+1,K]

 [AM1B1M..+..AMJBJM+. .+. AMNBNM..+..AM,N+1BN+1,M] [AM1B1,M+1. .+..AMJBJ,M+1..+..AMNBN,M+1 +..AM,N+1BN+1,M+1]

For the M+1th column:

AM+1,1
 B11. . .B1K. . .B1M. . .B1,M+1

.
 .
 .
 .
 .

.
 .
 .
 .
 .

AM+1,J
 BJ1. . .BJK. . .BJM. . .BJ,M+1

.
 .
 .
 .
 .
 =

.
 .
 .
 .
 .

AM+1,N
 BN1. . .BNK. . .BNM. . .BN,M+1

.
 .
 .
 .
 .

.
 .
 .
 .
 .

AM+1,N+1
 BN+1,1
. .BN+1,K
. .BN+1,M. .BN+1,M+1

AM+1,1 (B11. . .B1K. . .B1M. . .B1,M+1)
 AM+1,1B11. AM+1,1B1K. . AM+1,1B1M. . AM+1,1B1,M+1

. .
 .
 .
 .

 . .

.
 .
 .

. .
 .
 .
 .

 . .

.
 .
 .

AM+1,J (BJ1. . .BJK. . .BJM. . .BJ,M+1)
 AM+1,JBJ1
 .AM+1,J BJK. AM+1,J BJM. . AM+1,J BJ,M+1

. .
 .
 .
 .
 = . .

.
 .
 .

. .
 .
 .
 .

 . .

.
 .
 .

AM+1,N (BN1. . .BNK. . .BNM. . .BN,M+1)
 AM+1,NBN1
 .AM+1,NBNK. . AM+1,NBNM. . AM+1,N BN,M+1

. .
 .
 .
 .

 . .

.
 .
 .

. .
 .
 .
 .

 . .

.
 .
 .

AM+1,N+1 (BN+1,1. .BN+1,K. .BN+1,M. .BN+1,M+1)
 AM+1,N+1BN+1,1. AM+1,N+1BN+1,K. AM+1,N+1BN+1,M. AM+1,N+1BN+1,M+1
[AM+1,1B11.+ .AM+1,JBJ1+. . . AM+1,NBN,1 + AM+1,N+1BN+1,1] [AM+1,1B1K+..AM+1,JBJK.+ . AM+1,NBNK + AM+1,N+1BN+1,K]

AM+1,1B1M + .AM+1,JBJM. +. AM+1,NBNM + AM+1,,N+1BN+1,M] [AM+1,1B1,M+1.+.AM+1,JBJ,M+1.+..AM+1,NBN,M+1 + AM+1,N+1BN+1,M+1]

Transposing the Nested Array (Stacking the sub-matrices on top of each other) we get

 A11 B11. . . A11B1K. . . A11B1M. . . A11B1,M+1

 . .

.
 .
 .

 . .

.
 .
 .

 AiJ BJ1. . . AiJ BJK. . . AiJ BJM. . . AiJ BJ,M+1

 . .

.
 .
 .

 . .

.
 .
 .

 A1N BN1. . . A1N BNK. . . A1N BNM. . . A1N BN,M+1

 . .

.
 .
 .

 . .

.
 .
 .

 A1,N+1BN+1,1. . A1,N+1BN+1,K. . A1,N+1BN+1,M. . A1,N+1BN+1,M+1

 Ai1B11. . . Ai1B1K. . . Ai1B1M. . . Ai1B1,M+1

 . .

.
 .
 .

 . .

.
 .
 .

 AiJ BJ1. . . AiJBJK. . . AiJBJM. . . AiJBJ,M+1

 . .

.
 .
 .

 . .

.
 .
 .

 AiN BN1. . . AiN BNK. . .AiN BNM. . . AiN BN,M+1

 . .

.
 .
 .

 . .

.
 .
 .

 Ai,N+1 BN+1,1. . Ai,N+1 BN+1,K. . Ai,N+1 BN+1,M. . Ai,N+1 BN+1,M+1

 AM1B11. . . AM1B1K. . .
AM1B1M. . . AM1B1,M+1

 . .

.
 .
 .

 . .

.
 .
 .

 AMJBJ1. . . AMJBJK. . .
AMJBJM. . . AMJBJ,M+1

 . .

.
 .
 .

 . .

.
 .
 .

 AMNBN1. . . AMNBNK. .
AMNBNM. . . AMNBN,M+1

 . .

.
 .
 .

 . .

.
 .
 .

 AM,N+1BN+1,1. . AM,N+1BN+1,K. . AM,N+1BN+1,M. . AM,N+1BN+1,M+1

 AM+1,1B11. AM+1,1B1K. . AM+1,1B1M. . AM+1,1B1,M+1

 . .

.
 .
 .

 . .

.
 .
 .

 AM+1,JBJ1
 .AM+1,J BJK. AM+1,J BJM. . AM+1,J BJ,M+1

 . .

.
 .
 .

 . .

.
 .
 .

 AM+1,NBN1
 .AM+1,NBNK. . AM+1,NBNM. . AM+1,N BN,M+1

 . .

.
 .
 .

 . .

.
 .
 .

 AM+1,N+1BN+1,1. AM+1,N+1BN+1,K. AM+1,N+1BN+1,M. AM+1,N+1BN+1,M+1
Summing the columns in each sub-matrix we get:

[A11B11. .+ .AiJBJ1+. . . A1NBN1 + A1,N+1BN+1,1] [A11B1K+. . . .AiJBJK. .+ . A1NBNK + A1,N+1BN+1,K]

 A11B1M . + .AiJBJM+. .+. A1NBNM + . A1,N+1BN+1,M] [A11B1,M+1. .+.AijBj,M+1. .+.A1NBN,M+1 + A1,N+1BN+1,M+1]

[Ai1B11. .+ .AiJBJ1+. . . AiNBN1 + Ai,N+1BN+1,1] [Ai1B1K+. . .AiJBJK. .+ . AiNBNK + Ai,N+1BN+1,K]

 [Ai1B1M . +. AiJBJM . .+..AiNBNM + . Ai,N+1BN+1,M] [Ai1B1M+1. .+.AijBjM+1 . . +.AiNBNM+1 + Ai,N+1BN+1,M+1]

[AM1B11. .+..AMJBJ1+. . . AMNBN1..+..AM,N+1BN+1,1] [AM1B1K..+. .AMJBJK. .+. . AMNBNK..+.. AM,N+1BN+1,K]

 [AM1B1M..+..AMJBJM+. .+. AMNBNM..+..AM,N+1BN+1,M] [AM1B1,M+1. .+..AMJBJ,M+1..+..AMNBN,M+1 +..AM,N+1BN+1,M+1]

[AM+1,1B11.+ .AM+1,JBJ1+. . . AM+1,NBN,1 + AM+1,N+1BN+1,1] [AM+1,1B1K+..AM+1,JBJK.+ . AM+1,NBNK + AM+1,N+1BN+1,K]

AM+1,1B1M + .AM+1,JBJM. +. AM+1,NBNM + AM+1,,N+1BN+1,M] [AM+1,1B1,M+1.+.AM+1,JBJ,M+1.+..AM+1,NBN,M+1 + AM+1,N+1BN+1,M+1]

Separating each new column we get:

A11B11. .+ .A1JBJ1+. . . A1NBN1 + A1,N+1BN+1,1 A11B1K+. . . .A1JBjK. .+ . A1NBNK + A1,N+1BN+1,K . .

 .
 .
 .
 .

 .
 .
 .
.
.

.
 .
 .
 .

 .
 .
 .
.
.

Ai1B11. .+ .AiJBJ1+. . . AiNBN1 + Ai,N+1BN+1,1 Ai1B1K+. . . .AiJBJK. .+ . AiNBNK + Ai,N+1BN+1,K
.
 .
 .
 .

 .
 .
 .
.
.

.
 .
 .
 .

 .
 .
 .
.
.

AM1B11. .+ .AMJBJ1+. . . AMNBN1 + AM,N+1BN+1,1 AM1B1K+. . . .AMJBJK. .+ . AMNBNK + AM,N+1BN+1,K
.
 .
 .
 .

 .
 .
 .

.
 .
 .
 .

 .
 .
 .

AM+1,1B11.+ .AM+1,JBJ1+. . . AM+1,NBN+1 + AM+1,N+1BN+1,1 AM+1,1B1K+. . .AM+1,JBJK.+ . AM+1,NBNK + AM+1,N+1BN+1,K

A11B1M . + .A1JBJM . .+. A1NBNM + . A1,N+1BN+1,M A11B1M+1. .+.A1jBjM+1 . . +.A1NBNM+1 + A1,N+1BN+1,M+1

 .
 .
 .
 .

 .
 .
 .
 .

 .
 .
 .
 .

 .
 .
 .
 .

Ai1B1M . +. AiJBJM . .+..AiNBNM + . Ai,N+1BN+1,M Ai1B1M+1. .+.AijBjM+1 . . +.AiNBNM+1 + Ai,N+1BN+1,M+1

 .
 .
 .
 .

 .
 .
 .
 .

 .
 .
 .
 .

 .
 .
 .
 .

AM1B1M . + .AMJBJM+. .+. AMNBNM + . AM,N+1BN+1,M AM1B1M+1. .+.AMjBjM+1. . .+.AMNBNM+1 + AM,N+1BN+1,M+1

 .
 .
 .
 .

 .
 .
 .
 .

 .
 .
 .
 .

 .
 .
 .
 .

AM+1,1B1M + .AM+1,JBJM. +. AM+1,NBNM + AM+1,,N+1BN+1,M
AM+1,1B1M+1.+.AM+1,JBJ,M+1.+..AM+1,NBN,M+1 + AM+1,N+1BN+1,M+1
QED

This is the same answer we get as when we multiply the matrices the regular way.

We have now proved that the Half-Multiplier Operator when half multiplied into sub-matrices, transposing to a column matrix, summing the columns gives the same solution as regular Matrix Multiplication AijBjk = Cik.

THE ROW PRODUCT OF A MATRIX

OR

THE CROSS PRODUCT OF A MATRIX

When we took the half-multiplied sub-matrices and summed the columns, the solution was the same as matrix multiplication. Let’s look at what happens if we take the half-multiplied sub-matrices and sum their rows instead of their columns.

R([A]Tij o [B]JK = ([B]JK[1]k1) o [A]TiJ

A11 A21 A31
B11 B12 B13

A12 A22 A32 o
B21 B22 B23
=

A13 A23 A33
B31 B32 B33

A14 A24 A34
B41 B42 B43

A11
B11 B12 B13
A21
B11 B12 B13
A31
B11 B12 B13

A12 o
B21 B22 B23
A22 o
B21 B22 B23
A32 o
B21 B22 B23

A13
B31 B32 B33
A23
B31 B32 B33
A33
B31 B32 B33

A14
B41 B42 B43
A24
B41 B42 B43
A34
B41 B42 B43
[image: image96.wmf].

A

11

0

0

0

0

A

12

0

0

0

0

A

13

0

0

0

0

A

14

B

11

B

21

B

31

B

41

B

12

B

22

B

32

B

42

B

13

B

23

B

33

B

43

.

A

11

B

11

.

A

12

B

21

.

A

13

B

31

.

A

14

B

41

.

A

11

B

12

.

A

12

B

22

.

A

13

B

32

.

A

14

B

42

.

A

11

B

13

.

A

12

B

23

.

A

13

B

33

.

A

14

B

43

[image: image97.wmf].

A

21

0

0

0

0

A

22

0

0

0

0

A

23

0

0

0

0

A

24

B

11

B

21

B

31

B

41

B

12

B

22

B

32

B

42

B

13

B

23

B

33

B

43

.

A

21

B

11

.

A

22

B

21

.

A

23

B

31

.

A

24

B

41

.

A

21

B

12

.

A

22

B

22

.

A

23

B

32

.

A

24

B

42

.

A

21

B

13

.

A

22

B

23

.

A

23

B

33

.

A

24

B

43

[image: image98.wmf].

A

31

0

0

0

0

A

32

0

0

0

0

A

33

0

0

0

0

A

34

B

11

B

21

B

31

B

41

B

12

B

22

B

32

B

42

B

13

B

23

B

33

B

43

.

A

31

B

11

.

A

32

B

21

.

A

33

B

31

.

A

34

B

41

.

A

31

B

12

.

A

32

B

22

.

A

33

B

32

.

A

34

B

42

.

A

31

B

13

.

A

32

B

23

.

A

33

B

33

.

A

34

B

43

This is equal to:

[image: image99.wmf].

.

.

A

11

B

11

.

A

12

B

21

.

A

13

B

31

.

A

14

B

41

.

A

11

B

12

.

A

12

B

22

.

A

13

B

32

.

A

14

B

42

.

A

11

B

13

.

A

12

B

23

.

A

13

B

33

.

A

14

B

43

.

A

21

B

11

.

A

22

B

21

.

A

23

B

31

.

A

24

B

41

.

A

21

B

12

.

A

22

B

22

.

A

23

B

32

.

A

24

B

42

.

A

21

B

13

.

A

22

B

23

.

A

23

B

33

.

A

24

B

43

.

A

31

B

11

.

A

32

B

21

.

A

33

B

31

.

A

34

B

41

.

A

31

B

12

.

A

32

B

22

.

A

33

B

32

.

A

34

B

42

.

A

31

B

13

.

A

32

B

23

.

A

33

B

33

.

A

34

B

43

Here we are back to a nested array. We do not need to transpose this array, since after the row sums are done, the matrix is already in the form that is needed for the proper solution. I think that this the cross product of a matrix, (which is up until now undefined) and wait for better mathematicians than I to confirm or deny this hypothesis.

Let’s go ahead and sum the columns and see what we get.

A11(B11+B12+B13)
A21(B11+B12+B13)
A31(B11+B12+B13)

A12(B21+B22+B23)
A22(B21+B22+B23)
A32(B21+B22+B23)
=

A13(B31+B32+B33)
A23(B31+B32+B33)
A33(B31+B32+B33)

A14(B41+B42+B43)
A24(B41+B42+B43)
A34(B41+B42+B43)

A11(B1
A21(B1
A31(B1

A12(B2
A22(B2
A32(B2

A13(B3
A23(B3
A33(B3

A14(B4
A24(B4
A34(B4

But this is equal to:

(B1
A11
A21
A31
(B2 o
A12
A22
A32
(B3
A13
A23
A33
(B4
A14
A24
A34
So this is equivalent to the Itempage matrix in the inventory/accounting system. The neat thing about this operator is that it has it’s counterparts in regular mathematics. That is, the above expression can be calculated by the matric equation:

([B]JK[1]k1) o [A]TiJ

B11
B12
B13
1
A11
A21
A31

B21
B22
B23
1 o
A12
A22
A32
=

B31
B32
B33
1
A13
A23
A33

B41
B42
B43
1
A14
A24
A34

This is an important property. It says that if you transpose [A] then [B] becomes commutative with matrix [A]. Let’s look at a simple example for illustration. Bill has just come into some money. He wants to buy a boat for $10,000, two cars, one for $20,000 and the other for $15,000 , a TV/VCR for $500 and some new clothes, two suits for $250 each. Lets make a matrix out of what Bill wants to buy, and how much of each.

The one boat, one car, one TV/VCR and two suits become: [1 1 1 1 2]

And the one for price is:
10,000

20,000

15,000

 500

 250

To find the total, we multiply the two together in the regular way:

[1 1 1 1 2]
10,000

20,000

15,000
= $46,000

 500

 250

Now let’s transpose [A] and see what happens:

1
10,000

10,000
 1

1
20,000

20,000
 1

1 o
15,000 =
15,000
o 1

1
 500

500
 1

2
 250

250
 2

One boat equals $10,000 no matter how you look at it, the first car is still $20,000 multiplied both ways, etc.

This works for [A] and [B] if [A] is a row or column matrix, whether [A] is a N x M matrix or just a row or column matrix. But if [B] and [A] both become a matrix of more than just a row or column, then multiplying [B]o[A]T gives the transpose of [A][B]. (This is proved somewhat a little later on in this section of my paper). i.e. Suppose:

D E F

[B] =
G H I
and [A]= [A B C]

J K L

[A B C]
 D E F

 G H I = [AD+BG+CJ AE+BH+CK AF+BI+CL]

 J K L

D E F

[B] =
G H I

J K L

D E F
1 A
 A(D+E+F)
 AD AE AF

 R([B]o[A] =
G H I
1 o B
 = B(G+H+I) = BG + BH + BI

J K L
1 C
 C(J+K+L)
 CJ CK CL

Sum the columns and we have the same answer as in [A][B] above. Remove the inner brackets from the nested array above and the solutions are equal. But this is also a valid solution all in it’s own. Even each individual column is a valid solution (or valid sub-solution) also. A good example of this you will see in the section on Itempage accounting.

An interesting effect occurs when

B11 + B12 + B13 = 1

B21 + B22 + B23 = 1

B31 + B32 + B33 = 1

B41 + B42 + B43 = 1

The equation reduces to:

R([A]iJ[B]JK = ([B]JK[1]K1) o [A]TiJ = [A]TiJ

I am going to call the above inventory where [B]JK[1]K1 = [1]J1 a closed system (or closed inventory) as opposed to an open inventory where [B]JK[1]K1 = [IP]J1.

NOW LET’S PROVE THIS FOR ALL NxM MATRICES:

 B11. . .B1K. . .B1M
 1

 .
 .
 .
 .

 .
 .
 .
 .

 BJ1. . .BJK. . .BJM
 1 =

 +.
 .
 .
 .

 .
 .
 .
 .

 BN1. . .BNK. . .BNM
 1

 NM
N,1

B11. .+. .B1K. .+. .B1M
.

.

BJ1. .+. .BJK. .+. .BJM.

.

.

BN1. .+. .BNK. .+. .BNM. NM

Then ([B]JK[1]K1) o [A]TiJ = (this will give us i sub-matrices)

B11. .+. .B1K. .+. .B1M.
A11 . . .Ai1 . . .AM1
.

.

BJ1. .+. .BJK. .+. .BJM. o
A1J . . .AiJ . . .AMJ.

.

.

BN1. .+. .BNK. .+. .BNM.
A1N . . .AiN . . . AMN

A11 . . .A1J . . .A1N

 .
 .
 .

[A]MN =
Ai1 . . .AiJ . . .AiN

.
 .
 .

AM1 . . .AMJ . . .AMN
LET (B1 = B11. .+. .B1K. .+. .B1M.

LET (B2 = BJ1. .+. .BJK. .+. .BJM.

LET (B3 = BN1. .+. .BNK. .+. .BNM.

And R([B] o [A]T= ((B1 o [A]T)+ ((B2 o [A]T) + ((B3 o[A]T)

((B1 o [A]T)=

B11. . . .0. . . .0

A11 . . .Ai1 . . .AM1
.

.

0. . . .B1K. . . 0
o
A1J . . .AiJ . . .AMJ.

.

.

0. . . .0. . . .B1M.

A1N . . .AiN . . . AMN

B11. . . .0. . . .0

A11 . . .Ai1 . . .AM1
.

.

0. . . .B1J. . . 0
o
A1J . . .AiJ . . .AMJ.

.

.

0. . . .0. . . .BN1

A1N . . .AiN . . . AMN

B11(A11 . . .Ai1 . . .AM1)

B11A11 .. B11Ai1 .. B11AM1
.
. .
 .

.
 .
 .

.
. .
 .

.
 .
 .

BJ1(A1J . . .AiJ . . .AMJ)
=
BJ1A1J .. BJ1AiJ .. BJ1AMJ
.
. .
 .

.
 .
 .

.
. .
 .

.
 .
 .

BN1(A1N . . .AiN . . . AMN)

BN1A1N .. BN1AiN .. BN1AMN

((B2 o [A]T)= (MAKE COLUMN 2 OF [A] INTO A DIAGONAL MATRIX AND MULTIPLY x [A], WE GET:

B1K(A11 . . .Ai1 . . .AM1)
B1KA11 .. B1KAi1 .. B1KAM1
.
. .
 .
.
 .
 .

.
. .
 .
.
 .
 .

BJK(A1J . . .AiJ . . .AMJ) =
BJKA1J .. BJKAiJ .. BJKAMJ

.
. .
 .
.
 .
 .

.
. .
 .
.
 .
 .

BMK(A1N . . .AiN . . . AMN)
BNKA1N .. BNKAiN .. BNKAMN

((B3 o [A]T)= (MAKE COLUMN 3 OF [B] INTO A DIAGONAL MATRIX AND MULTIPLY x [A], WE GET:

B1M(A11 . . .Ai1 . . .AM1)
B1MA11 .. B1MAi1 .. B1MAM1
.
. .
 .
 .
 .
 .

.
. .
 .
 .
 .
 .

BJM(A1J . . .AiJ . . .AMJ) =
BJMA1J .. BJMAiJ .. BJMAMJ
.
. .
 .
 .
 .
 .

.
. .
 .
 .
 .
 .

BNM(A1N . . .AiN . . . AMN)
BNMA1N .. BNMAiN .. BNMAMN

Now that we’ve computed the three sub-matrices, we must add them together. I don’t have a lot of room on this computer to add the whole thing and keep the computations short and clear. Let’s first add the first three sums that occupy A11:

B11A11 + B1KA11 + B1MA11 = A11(B11 + B1K + B1M).

These check, so let’s add them all together. Do you see anything that happens when we add the sub-matrices? That is the subject of my next proof.

A11B11.+.A11B1K.+.A11B1M.

Ai1B11.+.Ai1B1K.+.Ai1B1M

AM1B11.+. AM1B1K.+. AM1B1M

A1JBJ1.+.A1JBJK.+.A1JBJM.

AiJBJ1.+.AiJBJK.+.AiJBJM

AMJBJ1.+. AMJBJK.+. AMJBJM

A1NBN1.+.A1NBNK.+.A1NBNM

AiNBN1.+.AiNBNK.+.AiNBNM

AMNBN1.+. AMNBNK.+. AMNBNM

Which is equal to:

A11(B11.+.B1K.+.B1M)

Ai1(B11.+.B1K.+.B1M)

AM1(B11.+.B1K.+.B1M)

A1J(BJ1..+..BJK..+..BJM)

AiJ(BJ1..+..BJK..+..BJM)

AMJ(BJ1..+..BJK..+..BJM)

A1N(BN1..+..BNK..+..BNM)

AiN(BN1..+..BNK..+..BNM)

AMN(BN1..+..BNK..+..BNM)

QED

This is the proof for all NxM Matrices. Now to prove it works for all Matrices N+1,M+1.

Now let’s prove this:

 B11. . .B1K. . .B1M. . .B1,M+1

1

 .
 .
 .
 .

.

 .
 .
 .
 .

.

 BJ1. . .BJK. . .BJM. . .BJ,M1

1

 +.
 .
 .
 .

. =

 .
 .
 .
 .

.

 BN1. . .BNK. . .BNM. . .BN,M+1
1

 .
 .
 .
 .

.

 .
 .
 .
 .

.

 BN+1,1
. .BN+1,K
. .BN+1,M. .BN+1,M+1
1

B11. .+. .B1K. .+. .B1M. . +. .B1,M+1

.

.

BJ1. .+. .BJK. .+. .BJM. . +. .BJ,M1
.

.

BN1. .+. .BNK. .+. .BNM. . +. .BN,M+1
.

.

BN+1,1.+.
.BN+1,K .+. .BN+1,M. +. .BN+1,M+1

Then ([B]JK[1]K1) o [A]TiJ =

B11. .+. .B1K. .+. .B1M. . +. .B1,M+1

A11 . . .Ai1 . . .AM1 . . . AM+1,1
.

.

BJ1. .+. .BJK. .+. .BJM. . +. .BJ,M1

A1J . . .AiJ . . .AMJ. . . . AM+1,J
.

o

.

BN1. .+. .BNK. .+. .BNM. . +. .BN,M+1

A1N . . .AiN . . . AMN . . . AM+1,N
.

.

BN+1,1.+.
.BN+1,K .+. .BN+1,M. +. .BN+1,M+1

A1,N+1. . .Ai,N+1. . .AM,N+1. . . AM+1,N+1

A11 . . .A1J . . .A1N . . .A1,N+1

 .
 .
 .

.

Ai1 . . .AiJ . . .AiN . . .Ai,N+1

[A]MN =
.
 .
 .

.

AM1 . . .AMJ . . .AMN . . .AM,N+1

.
 .
 .

.

AM+1,1. . .AM+1,J. . .AM+1,N. . .AM+1,N+1
LET (B1 = B11. .+. .B1K. .+. .B1M. . +. .B1,M+1
LET (B2 = BJ1. .+. .BJK. .+. .BJM. . +. .BJ,M1

LET (B3 = BN1. .+. .BNK. .+. .BNM. . +. .BN,M+1

LET (B4 = BN+1,1.+.
.BN+1,K .+. .BN+1,M. +. .BN+1,M+1

And R([B] o [A]T= ((B1 o [A]T)+ ((B2 o [A]T) + ((B3 o[A]T) + ((B4 o [A]T)

((B1 o [A]T)=

B11. . . .0. . . .0. . . .0

A11 . . .Ai1 . . .AM1 . . . AM+1,1
.

.

0. . . .B1K. . . 0. . . 0

A1J . . .AiJ . . .AMJ. . . . AM+1,J
.

o

.

0. . . .0. . . .B1M. . . .0

A1N . . .AiN . . . AMN . . . AM+1,N
.

.

0. .
.0 . . . 0. . .B1,M+1

A1,N+1. . .Ai,N+1. . .AM,N+1. . . AM+1,N+1

N+1,M+1

 N+1,M+1

B11. . . .0. . . .0. . . .0

A11 . . .Ai1 . . .AM1 . . . AM+1,1
.

.

0. . . .B1J. . . 0. . . 0

A1J . . .AiJ . . .AMJ. . . . AM+1,J
.

o

.

0. . . .0. . . .BN1. . . .0

A1N . . .AiN . . . AMN . . . AM+1,N
.

.

0. .
.0 . . . 0. . .BN+1,1

A1,N+1. . .Ai,N+1. . .AM,N+1. . . AM+1,N+1

N+1,M+1

 N+1,M+1

B11(A11 . . .Ai1 . . .AM1 . . . AM+1,1)
B11A11 .. B11Ai1 .. B11AM1 .. B11AM+1,1
.
. .
 .
 .

.
 .
 .
 .

.
. .
 .
 .

.
 .
 .
 .

BJ1(A1J . . .AiJ . . .AMJ. . . . AM+1,J)

BJ1A1J .. BJ1AiJ .. BJ1AMJ .. BJ1AM+1,J

.
. .
 .
 .

.
 .
 .
 .

.
. .
 .
 .
 =
.
 .
 .
 .

BN1(A1N . . .AiN . . . AMN . . . AM+1,N)

BN1A1N .. BN1AiN .. BN1AMN .. BN1AM+1,N

.
. .
 .
 .

.
 .
 .
 .

.
. .
 .
 .

.
 .
 .
 .

BN+1,1(A1,N+1. . .Ai,N+1. . .AM,N+1. . . AM+1,N+1)
BN+1,1A1,N+1 .. BN+1,1Ai,N+1 .. BN+1,1AM,N+1 .. BN+1,1 AM+1,N+1)

((B2 o [A]T)= (MAKE COLUMN 2 OF [A] INTO A DIAGONAL MATRIX AND MULTIPLY x [A], WE GET:

B1K(A11 . . .Ai1 . . .AM1 . . . AM+1,1)
B1KA11 .. B1KAi1 .. B1KAM1 .. B1KAM+1,1
.
. .
 .
 .

.
 .
 .
 .

.
. .
 .
 .

.
 .
 .
 .

BJK(A1J . . .AiJ . . .AMJ. . . . AM+1,J)

BJKA1J .. BJKAiJ .. BJKAMJ .. BJKAM+1,J

.
. .
 .
 .

.
 .
 .
 .

.
. .
 .
 .
 =
.
 .
 .
 .

BMK(A1N . . .AiN . . . AMN . . . AM+1,N)

BNKA1N .. BNKAiN .. BNKAMN .. BNKAM+1,N

.
. .
 .
 .

.
 .
 .
 .

.
. .
 .
 .

.
 .
 .
 .

BN+1,K(A1,N+1. . .Ai,N+1. . .AM,N+1. . . AM+1,N+1)
BN+1,KA1,N+1 .. BN+1,KAi,N+1 .. BN+1,KAM,N+1 .. BN+1,K AM+1,N+1)

((B3 o [A]T)= (MAKE COLUMN 3 OF [B] INTO A DIAGONAL MATRIX AND MULTIPLY x [A], WE GET:

B1M(A11 . . .Ai1 . . .AM1 . . . AM+1,1)
B1MA11 .. B1MAi1 .. B1MAM1 .. B1MAM+1,1
.
. .
 .
 .

.
 .
 .
 .

.
. .
 .
 .

.
 .
 .
 .

BJM(A1J . . .AiJ . . .AMJ. . . . AM+1,J)

BJMA1J .. BJMAiJ .. BJMAMJ .. BJMAM+1,J

.
. .
 .
 .

.
 .
 .
 .

.
. .
 .
 .
 =
.
 .
 .
 .

BNM(A1N . . .AiN . . . AMN . . . AM+1,N)

BNMA1N .. BNMAiN .. BNMAMN .. BNMAM+1,N

.
. .
 .
 .

.
 .
 .
 .

.
. .
 .
 .

.
 .
 .
 .

BN+1,M(A1,N+1. . .Ai,N+1. . .AM,N+1. . . AM+1,N+1)
BN+1,MA1,N+1 .. BN+1,MAi,N+1 .. BN+1,MAM,N+1 .. BN+1,M AM+1,N+1)

((B4 o [A]T)= (MAKE COLUMN 4 OF [B] INTO A DIAGONAL MATRIX AND MULTIPLY x [A], WE GET

B1,M+1(A11 . . .Ai1 . . .AM1 . . . AM+1,1)
B1,M+1A11 .. B1,M+1Ai1 .. B1,M+1AM1 .. B1,M+1AM+1,1
.
. .
 .
 .

.
 .
 .
 .

.
. .
 .
 .

.
 .
 .
 .

BJ,M+1(A1J . . .AiJ . . .AMJ. . . . AM+1,J)
BJ,M+1A1J .. BJ,M+1AiJ .. BJ,M+1AMJ .. BJ,M+1AM+1,J

.
. .
 .
 .

.
 .
 .
 .

.
. .
 .
 .
 =
.
 .
 .
 .

BN,M+1(A1N . . .AiN . . . AMN . . . AM+1,N)
BN,M+1A1N .. BN,M+1AiN .. BN,M+1AMN .. BN,M+1AM+1,N

.
. .
 .
 .

.
 .
 .
 .

.
. .
 .
 .

.
 .
 .
 .

BN+1,M+1(A1,N+1. . .Ai,N+1. . .AM,N+1. . . AM+1,N+1)
BN+1,M+1A1,N+1 .. BN+1,M+1Ai,N+1 .. BN+1,M+1AM,N+1 .. BN+1,M+1AM+1,N+1)

Now that we’ve computed the four sub-matrices, we must add them together. I don’t have a lot of room on this computer to add the whole thing and keep the computations short and clear. Let’s first add the first four sums that occupy A11:

B11A11 + B1KA11 + B1MA11 +, B1,M+1 A11 = A11(B11 + B1K + B1M + B1,M+1).

These check, so let’s add them all together. Do you see anything that happens when we add the sub-matrices? That is the subject of my next proof.

A11B11.+.A11B1K.+.A11B1M.+.A11B1,M+

Ai1B11.+.Ai1B1K.+.Ai1B1M.+.Ai1B1,M+
A1JBJ1.+.A1JBJK.+.A1JBJM.+.A1JBJ,M1

AiJBJ1.+.AiJBJK.+.AiJBJM.+.AiJBJ,M1
A1NBN1.+.A1NBNK.+.A1NBNM.+.A1NBN,M+1

AiNBN1.+.AiNBNK.+.AiNBNM.+.AiNBN,M+1
A1,N+1BN+1,1.+.A1,N+1BN+1,K.+.A1,N+1BN+1,M.+.A1,N+1BN+1,M+1

Ai,N+1BN+1,1.+.Ai,N+1BN+1,K.+. Ai,N+1BN+1,M.+.Ai,N+1BN+1,M+1

AM1B11.+. AM1B1K.+. AM1B1M.+. AM1B1,M+

AM+1,1B11.+.AM+1,1B1K.+.AM+1,1B1M.+.AM+1,1B1,M+
AMJBJ1.+. AMJBJK.+. AMJBJM.+. AMJBJ,M1

AM+1,JBJ1.+.AM+1,JBJK.+.AM+1,JBJM.+.AM+1,JBJ,M1
AMNBN1.+. AMNBNK.+. AMNBNM.+. AMNBN,M+1

AM+1,NBN1.+.AM+1,NBNK.+.AM+1,NBNM.+.AM+1,NBN,M+1
AM,N+1BN+1,1.+.AM,N+1BN+1,K.+.AM,N+1BN+1,M.+.AM,N+1BN+1,M+1

AM+1,N+1BN+1,1.+.AM+1,N+1BN+1,K.+.AM+1,N+1BN+1,M.+.AM+1,N+1BN+1,M+1

Which is equal to:

A11(B11.+.B1K.+.B1M.+.B1,M+)

Ai1(B11.+.B1K.+.B1M.+.B1,M+)

A1J(BJ1..+..BJK..+..BJM..+..BJ,M1
)
AiJ(BJ1..+..BJK..+..BJM..+..BJ,M1)

A1N(BN1..+..BNK..+..BNM..+..BN,M+1)
AiN(BN1..+..BNK..+..BNM..+..BN,M+1)

A1,N+1(BN+1,1.+..BN+1,K.+..BN+1,M.+..BN+1,M+1)
Ai,N+1(BN+1,1.+..BN+1,K.+..BN+1,M.+..BN+1,M+1)

AM1(B11.+.B1K.+.B1M.+.B1,M+))

AM+1,1(B11.+.B1K.+.B1M.+.B1,M+))

AMJ(BJ1..+..BJK..+..BJM..+..BJ,M1)

AM+1,J(BJ1..+..BJK..+..BJM..+..BJ,M1)

AMN(BN1..+..BNK..+..BNM..+..BN,M+1)
AM+1,N(BN1..+..BNK..+..BNM..+..BN,M+1)

AM,N+1(BN+1,1.+..BN+1,K.+..BN+1,M.+..BN+1,M+1)
AM+1,N+1(BN+1,1.+..BN+1,K.+..BN+1,M.+..BN+1,M+1)

QED

SUMMARY OF 3 EQUATIONS DESCRIBED

R([A]TiJ o [B]JK = ([B]JK[1]K1) o [A]TiJ FOR OPEN SYSTEMS

 R([A]iJ[B]JK = ([B]JK[1]K1) o [A]TiJ = [I]jj[A]TiJ = [1]J1o[A]TiJ = [A]TiJ FOR CLOSED SYSTEMS

AND

R([B] o [A]T= ((B1 o [A]T)+ ((B2 o [A]T) + ((B3 o[A]T) + ((B4 o [A]T =
[IP1]+[IP2]+[IP3]+[IP4]

FOR EACH ITEM IN THE DATABASE MATRIX [B].

THE MATRIC PRODUCT OF A MATRIX:
M([A]TiJ o [B]JK = ([A]TiJ[1]J1) o [B]JK

A11 A21 A31
B11 B12 B13

A12 A22 A32 o
B21 B22 B23
=

A13 A23 A33
B31 B32 B33

A14 A24 A34
B41 B42 B43

A11
B11 B12 B13
A21
B11 B12 B13
A31
B11 B12 B13

A12 o
B21 B22 B23
A22 o
B21 B22 B23
A32 o
B21 B22 B23

A13
B31 B32 B33
A23
B31 B32 B33
A33
B31 B32 B33

A14
B41 B42 B43
A24
B41 B42 B43
A34
B41 B42 B43
[image: image100.wmf].

A

11

0

0

0

0

A

12

0

0

0

0

A

13

0

0

0

0

A

14

B

11

B

21

B

31

B

41

B

12

B

22

B

32

B

42

B

13

B

23

B

33

B

43

.

A

11

B

11

.

A

12

B

21

.

A

13

B

31

.

A

14

B

41

.

A

11

B

12

.

A

12

B

22

.

A

13

B

32

.

A

14

B

42

.

A

11

B

13

.

A

12

B

23

.

A

13

B

33

.

A

14

B

43

[image: image101.wmf].

A

21

0

0

0

0

A

22

0

0

0

0

A

23

0

0

0

0

A

24

B

11

B

21

B

31

B

41

B

12

B

22

B

32

B

42

B

13

B

23

B

33

B

43

.

A

21

B

11

.

A

22

B

21

.

A

23

B

31

.

A

24

B

41

.

A

21

B

12

.

A

22

B

22

.

A

23

B

32

.

A

24

B

42

.

A

21

B

13

.

A

22

B

23

.

A

23

B

33

.

A

24

B

43

[image: image102.wmf].

A

31

0

0

0

0

A

32

0

0

0

0

A

33

0

0

0

0

A

34

B

11

B

21

B

31

B

41

B

12

B

22

B

32

B

42

B

13

B

23

B

33

B

43

.

A

31

B

11

.

A

32

B

21

.

A

33

B

31

.

A

34

B

41

.

A

31

B

12

.

A

32

B

22

.

A

33

B

32

.

A

34

B

42

.

A

31

B

13

.

A

32

B

23

.

A

33

B

33

.

A

34

B

43

This is equal to:

[image: image103.wmf].

.

.

A

11

B

11

.

A

12

B

21

.

A

13

B

31

.

A

14

B

41

.

A

11

B

12

.

A

12

B

22

.

A

13

B

32

.

A

14

B

42

.

A

11

B

13

.

A

12

B

23

.

A

13

B

33

.

A

14

B

43

.

A

21

B

11

.

A

22

B

21

.

A

23

B

31

.

A

24

B

41

.

A

21

B

12

.

A

22

B

22

.

A

23

B

32

.

A

24

B

42

.

A

21

B

13

.

A

22

B

23

.

A

23

B

33

.

A

24

B

43

.

A

31

B

11

.

A

32

B

21

.

A

33

B

31

.

A

34

B

41

.

A

31

B

12

.

A

32

B

22

.

A

33

B

32

.

A

34

B

42

.

A

31

B

13

.

A

32

B

23

.

A

33

B

33

.

A

34

B

43

Here we are back to a nested array. We do not need to transpose this array, since after the row sums are done, the matrix is already in the form that is needed for the proper solution. To conserve on space, I am going to omit the first step here and just go ahead and collect terms, the complex stuff will be gotten to later.

Let’s go ahead and sum the matrices and see what we get:

B11(A11+A21+A31)
B12(A11+A21+A31)
B13(A11+A21+A31)

B21(A12+A22+A32)
B22(A12+A22+A32)
B23(A12+A22+A32)
= M([A]T o [B]=

B31(A13+A23+A33)
B32(A13+A23+A33)
B33(A13+A23+A33)

B41(A14+A24+A34)
B42(A14+A24+A34)
B43(A14+A24+A34)

B11(A1
B12(A1
B13(A1

B21(A2
B22(A2
B23(A2

B31(A3
B32(A3
B33(A3

B41(A4
B42(A4
B43(A4

But this is equal to:

(A1
B11
B21
B31
(A2 o
B12
B22
B32
(A3
B13
B23
B33
(A4
B14
B24
B34
So this is equivalent to the Accountpage matrix in the inventory/accounting system. The neat thing about this operator is that it also has it’s counterparts in regular mathematics. That is, the above expression can be calculated by the matric equation:

diag([A]TiJ[1]J1)[B]JK

This is also an important property. It says that if you transpose [A] and sum the rows of [A] and o multiply across [B], the solution is the same as if we took the half-multiplied matrices and added them all together. [A] is now commutative with [B].

For an open system, suppose:

 (A11+A21+A31)= 1

 (A12+A22+A32)= 1 , Then M([A]TiJ o [B]JK= [I]JJ o [B]JK = [B]JK

 (A13+A23+A33)= 1

 (A14+A24+A34)= 1

PROOF FOR ALL MxN MATRICES

A11. .. . Ai1. .. . AM1
 1

.
 .

.
 .

A1J. .. . AiJ. .. . AMJ
 1

.
 . =

.
 .

A1N. .. . AiN. .. . AMN
 1

A11. .+. . Ai1. .+. . AM1
.

.

A1J. .+. . AiJ. .+. . AMJ
.

.

A1N. .+. . AiN. .+. . AMN

Then [A]TiJ[1]i1 o [B]JK =

A11. . . Ai1. . . AM1
 1
B11. . . B1K. . . B1M
.
 .
 .
 .
 .

.
 .
 .
 .
 .

A1J. . . AiJ. . . AMJ
 1 o
BJ1. . . BJK. . . BJM

.
 .
.
 .
 .

.
 .
.
 .
 .

A1N. . . AiN. . . AMN
 1
BN1. . . BNK. . . BNM
LET (A1T = A11. .+. . Ai1. .+. . AM1
LET (A2T = A1J. .+. . AiJ. .+. . AMJ
LET (A3T = A1N. .+. . AiN. .+. . AMN

(A1T. . . 0. . . 0

 B11. . . B1K. . . B1M
.

 .
 .

.

 .
 .

0. . . (A2T. . . 0.

 BJ1. . . BJK. . . BJM
 =

.

 .
 .

.

 .
 .

0. . . 0. . . (A3T

 BN1. . . BNK. . . BNM

 B11(A1T. . . B1K(A1T. . . B1M(A1T

 .
 .
 .
 .

 .
 .
 .
 .

 BJ1(A2T. . . BJK(A2T. . . BJM(A2T =

 .
 .
 .
 .

 .
 .
 .
 .

 BN1(A3T. . . BNK(A3T. . . BNM(A3T

This matrix is also equal to the sum of each individual half-multiplied sub-matrices.

 M([A]To[B] = (([A1]T o [B]) + (([A2]T o [B]) + (([A3]T o [B])

(([A1]T o [B])

A11. . . 0. . . 0
 B11. . . B1K. . . B1M. . . B1,M+1
.
 .
 .
 .
 .

.
 .
 .
 .
 .

0. . . A1J. . . 0
 BJ1. . . BJK. . . BJM.. . .BJ,M+1

.
 .
 .
 .
 .

=

.
 .
 .
 .
 .

0. . . 0. . . A1M.
 BN1. . . BNK. . . BNM. . . BN,M+1

A11(B11 . . .B1K . . .B1M)
A11B11 .+. A11B1K .+. A11B1M
.
. .
 .
 .
 .
 .

.
. .
 .
 .
 .
 .

A1J(BJ1 . . .BJK . . .BJM) =
A1JBJ1 .+. A1JBJK .+. A1JBJM

.
. .
 .
 .

. .

.
. .
 .
 .

. .

A1M(BN1 . . .BNK . . . BNM)
A1MBN1 .+. A1MBNK .+. A1MBNM

(([A2]T o [B])= (MAKE COLUMN 2 OF [A] INTO A DIAGONAL MATRIX AND MULTIPLY x [B], WE GET:

Ai1(B11 . . .B1K . . .B1M)
Ai1B11 .+. Ai1B1K .+. Ai1B1M
.
. .
 .
.
 .
 .

.
. .
 .
.
 .
 .

AiJ(BJ1 . . .BJK . . .BJM) =
AiJBJ1 .+. AiJBJK .+. AiJBJM
.
. .
 .
.
 .
 .

.
. .
 .
.
 .
 .

AiN(BN1 . . .BNK . . . BNM)
AiNBN1 .+. AiNBNK .+. AiNBNM

(([A3]T o [B])= (MAKE COLUMN 3 OF [A] INTO A DIAGONAL MATRIX AND MULTIPLY x [B], WE GET:

AM1(B11 . . .B1K . . .B1M)
AM1B11 .+. AM1B1K .+. AM1B1M
.
. .
 .
.
 .
 .

.
. .
 .
.
 .
 .

AMJ(BJ1 . . .BJK . . .BJM) =
AMJBJ1 .+. AMJBJK .+. AMJBJM
.
. .
 .
.
 .
 .

.
. .
 .
.
 .
 .

AMN(BN1 . . .BNK . . . BNM
AMNBN1 .+. AMNBNi .+. AMNBNM

Now that we’ve computed the four sub-matrices, we must add them together. I don’t have a lot of room on this computer to add the whole thing and keep the computations short and clear. Let’s first add the first four sums that occupy A11:

A11B11 + B11Ai1 + AM1B11 = B11(A11 + Ai1 + AM1). = B11(A1T

These check, so let’s add them all together.

 B11(A1T. . . B1K(A1T. . . B1M(A1T

 .
 .
 .
 .

 .
 .
 .
 .

 BJ1(A2T. . . BJK(A2T. . . BJM(A2T
=

 .
 .
 .
 .

 .
 .
 .
 .

 BN1(A3T. . . BNK(A3T. . . BNM(A3T

B11(A11.+.Ai1.+.AM1)

B1K(A11.+.Ai1.+.AM1)
B1M(A11.+.Ai1.+.AM1)

BJ1(A1J.+.AiJ.+.AMJ)

BJK(A1J.+.AiJ.+.AMJ)
BJM(A1J.+.AiJ.+.AMJ)

BN1(A1N.+.AiN.+.AMN)

BNK(A1N.+.AiN.+.AMN)
BNM(A1N.+.AiN.+.AMN)

QED

This proves the operator works for all NxM matrices. Now to prove, by induction, that it works for all M+1, N+1 matrices. We will solve for a Nx1,Mx1 Matrix:

A11. .. . Ai1. .. . AM1. .. .AM+1,1
 1

.

 .

.

 .

A1J. .. . AiJ. .. . AMJ. . . AM+1,J.
 1

.

 . =

.

 .

A1N. .. . AiN. .. . AMN. . . AM+1,N
 1

.

 .

.

 .

A1,N+1
. Ai,N+1.. . AM,N+1. . AM+1,N+1
 1

A11. .+. . Ai1. .+. . AM1. .+. .AM+1,1
.

.

A1J. .+. . AiJ. .+. . AMJ. . +. AM+1,J.

.

.

A1N. .+. . AiN. .+. . AMN. . +. AM+1,N
.

.

A1,N+1
. Ai,N+1.+. . AM,N+1. +. .AM+1,N+1

Then ([A]TiJ[1]i1) o [B]JK =

A11. . . Ai1. . . AM1. . .AM+1,1
 1
B11. . . B1K. . . B1M. . . B1,M+1
.

 .
.
 .
 .
 .

.

 .
.
 .
 .
 .

A1J. . . AiJ. . . AMJ. . . AM+1,J.
 1
BJ1. . . BJK. . . BJM.. . .BJ,M+1

.

 . o
.
 .
 .
 .

.

 .
.
 .
 .
 .

A1N. . . AiN. . . AMN. . . AM+1,N
 1
BN1. . . BNK. . . BNM. . . BN,M+1
.

 .
.
 .
 .
 .

.

 .
.
 .
 .
 .

A1,N+1. . Ai,N+1. . AM,N+1. .AM+1,N+1
 1
BN+1,1. . BN+1,K . .BN+1,M . .BN+1,M+1

 N+1,M+1

LET (A1T = A11. .+. . Ai1. .+. . AM1. .+. .AM+1,1
LET (A2T = A1J. .+. . AiJ. .+. . AMJ. . +. AM+1,J.

LET (A3T = A1N. .+. . AiN. .+. . AMN. . +. AM+1,N
LET (A4T = A1,N+1
.+ Ai,N+1.+. . AM,N+1. +. .AM+1,N+1

(A1T. . . 0. . . 0. . .0

 B11. . . B1K. . . B1M. . . B1,M+1
.

 .
 .
 .
 .

.

 .
 .
 .
 .

0. . . (A2T. . . 0. . . 0.

 BJ1. . . BJK. . . BJM.. . .BJ,M+1

.

 .
 .
 .
 .
 =

.

 .
 .
 .
 .

0. . . 0. . . (A3T. . . 0

 BN1. . . BNK. . . BNM. . . BN,M+1
.

 .
 .
 .
 .

.

 .
 .
 .
 .

0. . . 0. . 0. . (A4T

 BN+1,1. . BN+1,K . .BN+1,M . .BN+1,M+1

 B11(A1T. . . B1K(A1T. . . B1M(A1T. . . B1,M+1(A1T

 .
 .
 .
 .

 .
 .
 .
 .

 BJ1(A2T. . . BJK(A2T. . . BJM(A2T.. . .BJ,M+1(A2T

 .
 .
 .
 .
 =

 .
 .
 .
 .

 BN1(A3T. . . BNK(A3T. . . BNM(A3T. . . BN,M+1(A3T

 .
 .
 .
 .

 .
 .
 .
 .

 BN+1,1(A4T. . BN+1,K(A4T . .BN+1,M(A4T . .BN+1,M+1(A4T

This matrix is also equal to the sum of each individual half-multiplied sub-matrix

 M([A]To[B] = (([A1]T o [B]) + (([A2]T o [B]) + (([A3]T o [B]) + (([A4]T o [B])

(([A1]T o [B])

A11. . . 0. . . 0. . .0

 B11. . . B1K. . . B1M. . . B1,M+1
.

 .
 .
 .
 .

.

 .
 .
 .
 .

0. . . A1J. . . 0. . . 0.

 BJ1. . . BJK. . . BJM.. . .BJ,M+1

.

 .
 .
 .
 .

=

.

 .
 .
 .
 .

0. . . 0. . . A1M. . . 0

 BN1. . . BNK. . . BNM. . . BN,M+1
.

 .
 .
 .
 .

.

 .
 .
 .
 .

0. . . 0. . 0. . A1,M+1

 BN+1,1. . BN+1,K . .BN+1,M . .BN+1,M+1

A11(B11 . . .B1K . . .B1M . . . B1,M+1)
A11B11 .+. A11B1K .+. A11B1M .+. A11B1,M+1
.
. .
 .
 .

.
 .
 .
 .

.
. .
 .
 .

.
 .
 .
 .

A1J(BJ1 . . .BJK . . .BJM. . . . BJ,M+1)

A1JBJ1 .+. A1JBJK .+. A1JBJM .+. A1JBJ,M+1

.
. .
 .
 .

.
 .
 .
 .

.
. .
 .
 .
 =
.
 .
 .
 .

A1M(BN1 . . .BNK . . . BNM . . . BN,M+1)

A1MBN1 .+. A1MBNK .+. A1MBNM .+. A1MBN,M+1

.
. .
 .
 .

.
 .
 .
 .

.
. .
 .
 .

.
 .
 .
 .

A1,M+1(BN+1,1. . .BN+1,K. . .BN+1,M. . . BN+1,M+1)
A1,M+1BN+1,1 .+. A1,M+1BN+1,K .+. A1,M+1BN+1,M .+. A1,M+1BN+1,M+1)

(([A2]T o [B])= (MAKE COLUMN 2 OF [A] INTO A DIAGONAL MATRIX AND MULTIPLY x [B], WE GET:

Ai1(B11 . . .B1K . . .B1M . . . B1,M+1)
Ai1B11 .+. Ai1B1K .+. Ai1B1M .+. Ai1B1,M+1
.
. .
 .
 .

.
 .
 .
 .

.
. .
 .
 .

.
 .
 .
 .

AiJ(BJ1 . . .BJK . . .BJM. . . . BJ,M+1)

AiJBJ1 .+. AiJBJK .+. AiJBJM .+. AiJBJ,M+1

.
. .
 .
 .

.
 .
 .
 .

.
. .
 .
 .
 =
.
 .
 .
 .

AiN(BN1 . . .BNK . . . BNM . . . BN,M+1)

AiNBN1 .+. AiNBNK .+. AiNBNM .+. AiNBN,M+1

.
. .
 .
 .

.
 .
 .
 .

.
. .
 .
 .

.
 .
 .
 .

Ai,N+1(BN+1,1. . .BN+1,K. . .BN+1,M. . . BN+1,M+1)
Ai,N+1BN+1,1 .+. Ai,N+1BN+1,K .+. Ai,N+1BN+1,M .+. Ai,N+1BN+1,M+1)

(([A3]T o [B])= (MAKE COLUMN 3 OF [A] INTO A DIAGONAL MATRIX AND MULTIPLY x [B], WE GET:

AM1(B11 . . .B1K . . .B1M . . . B1,M+1)
AM1B11 .+. AM1B1K .+. AM1B1M .+. AM1B1,M+1
.
. .
 .
 .

.
 .
 .
 .

.
. .
 .
 .

.
 .
 .
 .

AMJ(BJ1 . . .BJK . . .BJM. . . . BJ,M+1)

AMJBJ1 .+. AMJBJK .+. AMJBJM .+. AMJBJ,M+1

.
. .
 .
 .

.
 .
 .
 .

.
. .
 .
 .
 =
.
 .
 .
 .

AMN(BN1 . . .BNK . . . BNM . . . BN,M+1)

AMNBN1 .+. AMNBNi .+. AMNBNM .+. AMNBN,M+1

.
. .
 .
 .

.
 .
 .
 .

.
. .
 .
 .

.
 .
 .
 .

AM,N+1(BN+1,1. . .BN+1,i. . .BN+1,M. . . BN+1,M+1)
AM,N+1BN+1,1 .+. AM,N+1BN+1,K .+. AM,N+1BN+1,M .+. AM,N+1BN+1,M+1)

(([A4]T o [B])= (MAKE COLUMN 4 OF [A] INTO A DIAGONAL MATRIX AND MULTIPLY x [B], WE GET

AM+1,1(B11 . . .B1K . . .B1M . . . B1,M+1)
AM+1,1B11 .+. AM+1,1B1K .+. AM+1,1B1M .+. AM+1,1B1,M+1
.
. .
 .
 .

.
 .
 .
 .

.
. .
 .
 .

.
 .
 .
 .

AM+1,J(BJ1 . . .BJK . . .BJM. . . . BJ,M+1)
AM+1,JBJ1 .+. AM+1,JBJK .+. AM+1,JBJM .+. AM+1,JBJ,M+1

.
. .
 .
 .

.
 .
 .
 .

.
. .
 .
 .
 =
.
 .
 .
 .

AM+1,N(BN1 . . .BNK . . . BNM . . . BN,M+1)
AM+1,NBN1 .+. AM+1,NBNK .+. AM+1,NBNM .+. AM+1,NBN,M+1

.
. .
 .
 .

.
 .
 .
 .

.
. .
 .
 .

.
 .
 .
 .

AM+1,N+1(BN+1,1. . .BN+1,K. . .BN+1,M. . .BN+1,M+1)
AM+1,N+1BN+1,1 .+. AM+1,N+1BN+1,K .+. AM+1,N+1BN+1,M .+. AM+1,N+1BN+1,M+1)

Now that we’ve computed the four sub-matrices, we must add them together. I don’t have a lot of room on this computer to add the whole thing and keep the computations short and clear. Let’s first add the first four sums that occupy A11:

A11B11 + B11Ai1 + AM1B11 +, AM+1,1 B11 = B11(A11 + Ai1 + AM1 + AM+1,1). = B11(A1T

These check, so let’s add them all together.

 B11(A1T. . . B1K(A1T. . . B1M(A1T. . . B1,M+1(A1T

 .
 .
 .
 .

 .
 .
 .
 .

 BJ1(A2T. . . BJK(A2T. . . BJM(A2T.. . .BJ,M+1(A2T

 .
 .
 .
 .
 =

 .
 .
 .
 .

 BN1(A3T. . . BNK(A3T. . . BNM(A3T. . . BN,M+1(A3T

 .
 .
 .
 .

 .
 .
 .
 .

 BN+1,1(A4T. . BN+1,K(A4T . .BN+1,M(A4T . .BN+1,M+1(A4T

B11(A11.+.Ai1.+.AM1.+.AM+1,1)

B1K(A11.+.Ai1.+.AM1.+.AM+1,1)

BJ1(A1J.+.AiJ.+.AMJ.+.AM+1,J.)

BJK(A1J.+.AiJ.+.AMJ.+.AM+1,J.)

BN1(A1N.+.AiN.+.AMN.+.AM+1,N)

BNK(A1N.+.AiN.+.AMN.+.AM+1,N)

BN+1,1(A1,N+1.+.Ai,N+1.+.AM,N+1.+.AM+1,N+1)
BN+1,K(A1,N+1.+.Ai,N+1.+.AM,N+1.+.AM+1,N+1)

B1M(A11.+.Ai1.+.AM1.+.AM+1,1)

B1,M+1(A11.+.Ai1.+.AM1.+.AM+1,1)

BJM(A1J.+.AiJ.+.AMJ.+.AM+1,J.)

BJ,M+1(A1J.+.AiJ.+.AMJ.+.AM+1,J.)

BNM(A1N.+.AiN.+.AMN.+.AM+1,N)

BN,M+1(A1N.+.AiN.+.AMN.+.AM+1,N)

BN+1,M(A1,N+1.+.Ai,N+1.+.AM,N+1.+.AM+1,N+1)
BN+1,M+1(A1,N+1.+.Ai,N+1.+.AM,N+1.+.AM+1,N+1)

QED

We have now proved by induction that this operator works for Matrices of any size or dimension.

SUMMARY OF 3 EQUATIONS DESCRIBED

M([A]TiJ o [B]JK = ([A]TiJ[1]i1) o [B]JK FOR OPEN SYSTEMS

M([A]TiJ o [B]JK = ([A]TiJ[1]i1​) o [B]JK = [I]JJ[B]JK = [1]J1 o [B]JK = [B]JK FOR CLOSED SYSTEMS

AND

 M([A]To[B] = (([A1]T o [B]) + (([A2]T o [B]) + (([A3]T o [B]) + (([A4]T o [B])

 [AP1]+[AP2]+[AP3]+[AP4]

FOR EACH ITEM IN THE SPREADSHEET MATRIX [A].

THE TRANSPOSE COMMUTIVITY OF THE HALF-MULTIPLIER OPERATOR

The proofs are long and confusing. I’m not even sure what I’m proving since we have no solutions in mathematics to compare them too, so I just tried to prove that the whole matrix is a sum of it’s sub-matrices. In view of this, I think I’ll just do a micro-proof here. If the professional mathematicians holler, they can substitute I, J, N and M for matrix [A] and J, K, M and N for matrix [B], or they can prove it for themselves.

 (
([A]TiJ o [B]JK =

B11 B12 B13
A11 A21 A31

B21 B22 B23 o
A12 A22 A32
=

B31 B32 B33
A13 A23 A33

B41 B42 B43
A14 A24 A34

B11A11 B11A21 B11A31 B12A11 B12A21 B12A31 B13A11 B13A21 B13A31

B21A12 B21A22 B21A32 B22A12 B22A22 B22A32 B23A12 B23A22 B23A32

B31A13 B31A23 B31A33 B32A13 B32A23 B32A33 B33A13 B33A23 B33A33

B41A14 B41A24 B41A34 B42A14 B42A24 B42A34 B43A14 B43A24 B43A34

Now we will transpose the nested array to put the array into a form we can mathematically use. Unlike the proof for the Half-multiplier Operator at the beginning of this section, when I transpose this time, we will have a single stacked matrix to contend with. We will sum using a database matrix. i.e. (I have separated the 3 sub-matrices just to make it easier to see what I’m doing, we do not need to do it when we are programming this on a computer. The [DB] matrix takes care of this).

1 1 1 1 0 0 0 0 0 0 0 0
B11A11 B11A21 B11A31
0 0 0 0 1 1 1 1 0 0 0 0
B21A12 B21A22 B21A32
0 0 0 0 0 0 0 0 1 1 1 1
B31A13 B31A23 B31A33

B41A14 B41A24 B41A34

B12A11 B12A21 B12A31

B22A12 B22A22 B22A32 =

B32A13 B32A23 B32A33

B42A14 B42A24 B42A34

B13A11 B13A21 B13A31

B23A12 B23A22 B23A32

B33A13 B33A23 B33A33

B43A14 B43A24 B43A34

B11A11+B21A12+B31A13+B41A14 B11A21+B21A22+B31A23+B41A24 B11A31+B21A32+B31A33+B41A34

B12A11+B22A12+B32A13+B42A14 B12A21+B22A22+B32A23+B42A24 B12A31+B22A32+B32A33+B42A34

B13A11+B23A12+B33A13+B43A14 B13A21+B23A22+B33A23+B43A24 B13A31+B23A32+B33A33+B43A34

There is no need to re-transpose back into the nested array because this is the final form we want. When we re-transpose, we can take two steps of action. The outer brackets can be discarded and we are left with the sub-matrices as a solution or as working operators. Or, we may leave it in the matrix-matrix form, manipulate the inner brackets to choose the size (columns only) of the solution matrices, then remove the outer bracket for the engineered solution. Let’s multiply [A]x[B] in the normal way:

[image: image104.png]41 A Az Ay
a1 A Ay Ay
431 A3g Az Ay

[image: image105.wmf].

A

11

B

11

.

A

12

B

21

.

A

13

B

31

.

A

14

B

41

.

A

11

B

12

.

A

12

B

22

.

A

13

B

32

.

A

14

B

42

.

A

11

B

13

.

A

12

B

23

.

A

13

B

33

.

A

14

B

43

[image: image106.wmf].

A

21

B

11

.

A

22

B

21

.

A

23

B

31

.

A

24

B

41

.

A

21

B

12

.

A

22

B

22

.

A

23

B

32

.

A

24

B

42

.

A

21

B

13

.

A

22

B

23

.

A

23

B

33

.

A

24

B

43

[image: image107.wmf].

A

31

B

11

.

A

32

B

21

.

A

33

B

31

.

A

34

B

41

.

A

31

B

12

.

A

32

B

22

.

A

33

B

32

.

A

34

B

42

.

A

31

B

13

.

A

32

B

23

.

A

33

B

33

.

A

34

B

43

Which is the transpose of the value computed above. It is also equal to [B]T[A]T i.e.

[image: image108.wmf].

T

B

11

B

21

B

31

B

41

B

12

B

22

B

32

B

42

B

13

B

23

B

33

B

43

T

A

11

A

21

A

31

A

12

A

22

A

32

A

13

A

23

A

33

A

14

A

24

A

34

=

[image: image109.wmf].

A

11

B

11

.

A

12

B

21

.

A

13

B

31

.

A

14

B

41

.

A

11

B

12

.

A

12

B

22

.

A

13

B

32

.

A

14

B

42

.

A

11

B

13

.

A

12

B

23

.

A

13

B

33

.

A

14

B

43

.

A

21

B

11

.

A

22

B

21

.

A

23

B

31

.

A

24

B

41

.

A

21

B

12

.

A

22

B

22

.

A

23

B

32

.

A

24

B

42

.

A

21

B

13

.

A

22

B

23

.

A

23

B

33

.

A

24

B

43

.

A

31

B

11

.

A

32

B

21

.

A

33

B

31

.

A

34

B

41

.

A

31

B

12

.

A

32

B

22

.

A

33

B

32

.

A

34

B

42

.

A

31

B

13

.

A

32

B

23

.

A

33

B

33

.

A

34

B

43

micro-QED
NESTED ARRAYS

The process of half-multiplying two matrices seems to naturally produce a nested array.

These nested arrays have interesting properties, but properties I am unable to prove. They are free wheeling and we can do almost anything we want with them, as long as we do not break the rules of mathematics. When we half-multiply and obtain the i sub-matrices, if we transpose the nested array, the elements do not change their order, just the matrices. Also, the inner set of brackets around the sub-matrices disappear and we can treat this transposed nested array as a regular matrix for purposes of multiplication, addition and subtraction. We can then re-transpose the final matrix if we wish, or leave it in the same transposed form. Another interesting and perhaps a very important property is that after half-multiplication, we can adjust the brackets around the sub-matrices to any size we wish, though normally they would all be of the same dimensions, this need not always be the case (see the examples on statistics, Section 2.3 and 2.4). Let’s look at a simple example where we take two sets of data, X and Y.

We will wish to multiply each X by it’s corresponding Y value.

First though, I must show how to transpose a nested array.

TRANSPOSING NESTED ARRAYS

I do not know how to prove this yet, the transpose of a Nested Array comes from the work done in Statistics and Quantum Chemistry. Suppose we have 4 arrays:

[image: image110.wmf]A

1

2

3

4

5

6

7

8

9

B

2

4

6

8

1

3

5

9

7

C

1

3

5

7

9

2

4

6

8

D

1

4

7

2

5

8

3

6

9

The Nested Array becomes:

[image: image111.wmf]1

2

3

4

5

6

7

8

9

2

4

6

8

1

3

5

9

7

.

1

3

5

7

9

2

4

6

8

.

1

4

7

2

5

8

3

6

9

.

Or we can write it in terms of the sub-matrices:

[image: image112.wmf]A

B

C

D

(

)

When we transpose this we get:

[image: image113.wmf]A

B

C

D

(

)

T

=

A

B

C

D

[image: image114.wmf]NA

A

B

C

D

Let

Which becomes:

[image: image115.wmf]NA

1

2

3

4

5

6

7

8

9

2

4

6

8

1

3

5

9

7

1

3

5

7

9

2

4

6

8

1

4

7

2

5

8

3

6

9

=

The arrays transpose, but the individual elements inside the arrays do not.

Now let’s look at a simple example where we take two sets of data, X and Y.

We will wish to multiply each X by it’s corresponding Y value.

[image: image116.wmf]X1

X2

X3

X4

Y1

Y2

Y3

Y4

X5

X6

X7

X8

Y5

Y6

Y7

Y8

X9

X10

X11

X12

Y9

Y10

Y11

Y12

Half-multiply by [1]4,1 to create the nested array

[image: image117.wmf]1

1

1

1

 o[image: image118.wmf]X1

X2

X3

X4

Y1

Y2

Y3

Y4

X5

X6

X7

X8

Y5

Y6

Y7

Y8

X9

X10

X11

X12

Y9

Y10

Y11

Y12

=

[image: image119.wmf]X1

X2

X3

X4

Y1

Y2

Y3

Y4

X5

X6

X7

X8

Y5

Y6

Y7

Y8

X9

X10

X11

X12

Y9

Y10

Y11

Y12

Now we remove the inner bracket and create three 2x4 sub-matrices:

[image: image120.wmf].

.

X1

X2

X3

X4

Y1

Y2

Y3

Y4

X5

X6

X7

X8

Y5

Y6

Y7

Y8

X9

X10

X11

X12

Y9

Y10

Y11

Y12

Now we transpose this nested array:

 T

[image: image121.wmf].

.

X1

X2

X3

X4

Y1

Y2

Y3

Y4

X5

X6

X7

X8

Y5

Y6

Y7

Y8

X9

X10

X11

X12

Y9

Y10

Y11

Y12

 =

[image: image122.wmf]X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

X11

X12

Y1

Y2

Y3

Y4

Y5

Y6

Y7

Y8

Y9

Y10

Y11

Y12

Note the inner brackets are gone, the elements themselves are not transposed. To multiply by adding, we need to take the log of the elements of the array:

[image: image123.wmf]LOGX1

LOGX2

LOGX3

LOGX4

LOGX5

LOGX6

LOGX7

LOGX8

LOGX9

LOGX10

LOGX11

LOGX12

LOGY1

LOGY2

LOGY3

LOGY4

LOGY5

LOGY6

LOGY7

LOGY8

LOGY9

LOGY10

LOGY11

LOGY12

To take the log in MathCad, we must name the above matrix. I can't quite do it here because if you name a symbolic array, all the elements turn black. But if these were numbers and I called the transposed array A, then

 (

 (
 LOGA = log(A)vectorize (vectorize is the button on the matrix palette with the X * Y with an arrow over it. Now let's multiply the X's and Y's together, take the anti-log and obtain our solution.

[image: image124.wmf]TWO1

1

1

[image: image125.wmf].

LOGX1

LOGX2

LOGX3

LOGX4

LOGX5

LOGX6

LOGX7

LOGX8

LOGX9

LOGX10

LOGX11

LOGX12

LOGY1

LOGY2

LOGY3

LOGY4

LOGY5

LOGY6

LOGY7

LOGY8

LOGY9

LOGY10

LOGY11

LOGY12

1

1

LOGX1

LOGY1

LOGX2

LOGY2

LOGX3

LOGY3

LOGX4

LOGY4

LOGX5

LOGY5

LOGX6

LOGY6

LOGX7

LOGY7

LOGX8

LOGY8

LOGX9

LOGY9

LOGX10

LOGY10

LOGX11

LOGY11

LOGX12

LOGY12

(

To convert this to regular math, we do the following: XY= 10LOGAxTWO1 vectorize, where TWO1 represents a matrix with two rows and one column. Generally, the way I use these variables throughout this paper, every ONE2 (one row, 2 columns) are filled with ones only. Thus NINE1 has 9 rows and one column all filled with ones. Suppose one of the X or Y values is zero, how do we take the log of zero which equals minus infinity? All we need is a number that is very close to zero, not zero itself. For purposes of this paper, I define zero by default as 10EEX-100. This gives a log of -100, close enough to zero for the problems presented here and for most problems involving the universe. So I can show the program, I will call A=[1 1]. This program works if all the elements are numbers rather than symbols.

[image: image126.wmf]A

(

)

1

1

[image: image127.wmf]LOGA

log

(

)

A

[image: image128.wmf]A1

.

LOGA

TWO1

[image: image129.wmf]XY

10

A1

The solution we get back is:

[image: image130.wmf]X1Y1

X2Y2

X3Y3

X4Y4

X5Y5

X6Y6

X7Y7

X8Y8

X9Y9

X10Y10

X11Y11

X12Y12

Now we re-transpose the matrix:

[image: image131.wmf]X1Y1

X2Y2

X3Y3

X4Y4

X5Y5

X6Y6

X7Y7

X8Y8

X9Y9

X10Y10

X11Y11

X12Y12

And this is our statistical matrix with the corresponding X's and Y's multiplied.

ONTO MULTIPLICATION

Let’s now check on a micro-proof concerning onto multiplication of matrices (element by corresponding element, rather than the sum of row x column). This is illegal according to modern mathematics. I claim 3 x 2 is always equal to 6, no matter how you multiply the two numbers together. This is part of the connection between our numbers we are familiar with and matrices. Whatever we can do with single numbers, we can do thousands of times in one operation with matrices. I wish a professional mathematician would prove to me that 3 x 2 (6 when done in the following manner. Let’s take two general matrices:

[image: image132.wmf]J

K

L

M

N

O

P

Q

R

[image: image133.wmf]A

B

C

D

E

F

G

H

I

and multiply them such that we get JxA, MxD, PxG, etc. We first need to take the logs of the two matrices, add them to multiply the numbers, and take the anti-log to return the numbers in familiar form:

[image: image134.wmf]log

A

B

C

D

E

F

G

H

I

ln

(

)

A

ln

(

)

10

ln

(

)

B

ln

(

)

10

ln

(

)

C

ln

(

)

10

ln

(

)

D

ln

(

)

10

ln

(

)

E

ln

(

)

10

ln

(

)

F

ln

(

)

10

ln

(

)

G

ln

(

)

10

ln

(

)

H

ln

(

)

10

ln

(

)

I

ln

(

)

10

[image: image135.wmf]log

J

K

L

M

N

O

P

Q

R

ln

(

)

J

ln

(

)

10

ln

(

)

K

ln

(

)

10

ln

(

)

L

ln

(

)

10

ln

(

)

M

ln

(

)

10

ln

(

)

N

ln

(

)

10

ln

(

)

O

ln

(

)

10

ln

(

)

P

ln

(

)

10

ln

(

)

Q

ln

(

)

10

ln

(

)

R

ln

(

)

10

[image: image136.wmf]log

A

B

C

D

E

F

G

H

I

log

J

K

L

M

N

O

P

Q

R

ln

(

)

A

ln

(

)

10

ln

(

)

J

ln

(

)

10

ln

(

)

B

ln

(

)

10

ln

(

)

K

ln

(

)

10

ln

(

)

C

ln

(

)

10

ln

(

)

L

ln

(

)

10

ln

(

)

D

ln

(

)

10

ln

(

)

M

ln

(

)

10

ln

(

)

E

ln

(

)

10

ln

(

)

N

ln

(

)

10

ln

(

)

F

ln

(

)

10

ln

(

)

O

ln

(

)

10

ln

(

)

G

ln

(

)

10

ln

(

)

P

ln

(

)

10

ln

(

)

H

ln

(

)

10

ln

(

)

Q

ln

(

)

10

ln

(

)

I

ln

(

)

10

ln

(

)

R

ln

(

)

10

[image: image137.wmf]10

ln

(

)

A

ln

(

)

10

ln

(

)

J

ln

(

)

10

ln

(

)

B

ln

(

)

10

ln

(

)

K

ln

(

)

10

ln

(

)

C

ln

(

)

10

ln

(

)

L

ln

(

)

10

ln

(

)

D

ln

(

)

10

ln

(

)

M

ln

(

)

10

ln

(

)

E

ln

(

)

10

ln

(

)

N

ln

(

)

10

ln

(

)

F

ln

(

)

10

ln

(

)

O

ln

(

)

10

ln

(

)

G

ln

(

)

10

ln

(

)

P

ln

(

)

10

ln

(

)

H

ln

(

)

10

ln

(

)

Q

ln

(

)

10

ln

(

)

I

ln

(

)

10

ln

(

)

R

ln

(

)

10

(here we take the anti-log 10x . We must do this by hand, MathCad can’t take the anti-log of a symbolic.)

=[image: image138.wmf]AJ

BK

CL

DM

EN

FO

GP

HQ

IR

Or putting in numbers:

[image: image139.wmf]M1

1

2

3

4

4

3

2

1

3

4

1

2

2

1

4

3

[image: image140.wmf]M2

4

3

2

1

1

2

3

4

2

4

1

3

3

1

4

2

[image: image141.wmf]LOGM1M2

log

(

)

M1

log

(

)

M2

[image: image142.wmf]M1M2

10

LOGM1M2

[image: image143.wmf]=

M1M2

4

6

6

4

4

6

6

4

6

16

1

6

6

1

16

6

Suppose one or more of the elements in M1 and M2 are zero's? We proceed as follows, letting zero, by default, equal 10EEX-100:

[image: image144.wmf]M3

1

2

3

4

4

10

100

2

1

3

4

1

2

2

1

4

3

[image: image145.wmf]M4

4

3

2

1

1

2

3

10

100

2

4

1

3

3

1

4

2

[image: image146.wmf]LOGM3M4

log

(

)

M3

log

(

)

M4

[image: image147.wmf]M3M4

10

LOGM3M4

[image: image148.wmf]=

M3M4

4

6

6

4

4

0

6

0

6

16

1

6

6

1

16

6

MathCad cannot remove a diagonal from a matrix, it can take a column matrix and make a diagonal, but not vice versa. In many applications, especially since the half-multiplier’s matrix equivalent is multiplication by a diagonal matrix, we need to be able to remove the diagonal from a matrix and make a separate matrix out of it. The following is how I do it with MathCad. The HP-48G will remove the diagonal from a matrix as a column matrix and allows us to re-make it into a diagonal matrix.

MATHCAD +6:

Suppose we have a matrix and we wish to square every element in the matrix and add them to get the grand sum of squares. We take the matrix, transpose it and multiply it by itself. i.e. [A]2 = [A]T[A]. The sum of the squares in each column lie in the diagonal. We need to separate the diagonal from the rest of the matrix, and then add the elements together to get a single sum. We proceed as follows:

[image: image149.wmf]A

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

[image: image150.wmf]=

T

A

1

5

9

13

2

6

10

14

3

7

11

15

4

8

12

16

[image: image151.wmf]ASQ

.

T

A

A

[image: image152.wmf]=

ASQ

30

70

110

150

70

174

278

382

110

278

446

614

150

382

614

846

CHECK:

[image: image153.wmf]=

16

9

4

1

30

[image: image154.wmf]=

13

2

14

2

15

2

16

2

846

We need to remove the diagonal, MathCad will not do this for us. This is the best way: Write a template 4x4 identity matrix, but write it as the log (this helps take care of the problem of the log of zero). Take the log of ASQ, add the two and take the anti-log. This will return the diagonal of ASQ.

[image: image155.wmf]LOGASQ

log

(

)

ASQ

Here I take the log of each individual element in [A]2 .

[image: image156.wmf]LOGI4

0

100

100

100

100

0

100

100

100

100

0

100

100

100

100

0

This is the log of the [I]4,4 matrix.

[image: image157.wmf]LOGDIAGASQ

LOGI4

LOGASQ

[image: image158.wmf]DIAGASQ

10

LOGDIAGASQ

Here I take the anti-log of each element to obtain the final solution.

[image: image159.wmf]=

DIAGASQ

30

0

0

0

0

174

0

0

0

0

446

0

0

0

0

846

Now we need to sum the values. Define:

HP-48G PROGRAM: MATRIX, ENTER VALUES, ((,(A STO (this stores the matrix in A)
RCL A

(
((TRN

(
SWAP

x

MTH,MATR,NXT,(DIAG
[30 174 446 846]

4

(
DIAG(
RCL ONE4
MUST ENTER ONE4 AS A COLUMN MATRIX FIRST, THEN TRANSPOSE TO GET ROW MATRIX, OR

SWAP

MATH WILL NOT WORK.

x

RCL ONE4

((TRN

(
x
1496

We can also accomplish the same thing by multiplying element by element then compute the grand sum of the matrix.

[image: image160.wmf]=

AVECTSQ

1

4

9

16

25

36

49

64

81

100

121

144

169

196

225

256

[image: image161.wmf]GRANDSUMASQ

.

.

ONE4

AVECTSQ

T

ONE4

[image: image162.wmf]=

GRANDSUMASQ

1496

I should have done the math this way with statistics, bur did not really see how simple it was until now (8-12-97). But the way I did it with statistics follows the more acceptable rules of math. Feel free to find the grand sum of squares in this manner rather than the ways I solved them later in this book if you so wish.

Also, when we transpose a nested array, we may put it in the form of a diagonal matrix

instead of a column or row matrix. I’ll not get into that here, but will field some examples in

quantum chemistry, Gaussian reduction and statistics.

Below are some simple computations of Nested arrays from a request from Dr. Monroy in Juarez, Mexico.

Dear Dr. Monroy:

These are some of the properties of nested arrays as apply to the operator, since your problem uses square matrices I used examples as square matrices although they may be MxN just as easily. Hope they might be of help to you. The three arrays are defined as C, D and E and their nested form is defined as A. Imagine they are stacked on top of each other (like crackers) in 3-D but the only way to display them is in 2-D form. MathCad cannot perform computations on nested arrays, so in order to utilize them we ignore the brackets and just remember that they are there.

[image: image163.wmf]C

1

4

7

2

5

8

3

6

9

 [image: image164.wmf]D

10

13

16

11

14

17

12

15

18

 [image: image165.wmf]E

19

22

25

20

23

26

21

24

27

First we combine the separate arrays into one single array A. They are still nested, but since computers can’t handle the math we must “remember” that there are brackets around them and work on them from this premise. This is the premise behind the mathematics in the section on Statistics later on in this book.

[image: image166.wmf]A

1

4

7

2

5

8

3

6

9

10

13

16

11

14

17

12

15

18

19

22

25

20

23

26

21

24

27

 [image: image167.wmf]B

1

0

0

1

0

0

1

0

0

0

1

0

0

1

0

0

1

0

0

0

1

0

0

1

0

0

1

TO ADD EACH THREE MATRICES SEPARATELY:

[image: image168.wmf]=

.

A

B

30

39

48

33

42

51

36

45

54

CHECK: [image: image169.wmf]=

C

D

E

30

39

48

33

42

51

36

45

54

LET'S ADD MATRIX 1 + MATRIX THREE AND IGNORE MATRIX 2:

[image: image170.wmf]=

A

1

4

7

2

5

8

3

6

9

10

13

16

11

14

17

12

15

18

19

22

25

20

23

26

21

24

27

 [image: image171.wmf]R

1

0

0

0

0

0

1

0

0

0

1

0

0

0

0

0

1

0

0

0

1

0

0

0

0

0

1

[image: image172.wmf]=

.

A

R

20

26

32

22

28

34

24

30

36

 CHECK: [image: image173.wmf]=

C

E

20

26

32

22

28

34

24

30

36

TO ONTO MULTIPLY EACH SEPARATE MATRIX BY ANOTHER:

[image: image174.wmf]F1

augment

(

)

,

E

D

[image: image175.wmf]F

augment

(

)

,

F1

C

[image: image176.wmf]=

F

19

22

25

20

23

26

21

24

27

10

13

16

11

14

17

12

15

18

1

4

7

2

5

8

3

6

9

[image: image177.wmf]=

(

)

.

A

F

19

88

175

40

115

208

63

144

243

100

169

256

121

196

289

144

225

324

19

88

175

40

115

208

63

144

243

TO MULTIPLY THE THREE MATRICES THE REGULAR WAY:

[image: image178.wmf]=

A

1

4

7

2

5

8

3

6

9

10

13

16

11

14

17

12

15

18

19

22

25

20

23

26

21

24

27

[image: image179.wmf]G

1

4

7

0

0

0

0

0

0

2

5

8

0

0

0

0

0

0

3

6

9

0

0

0

0

0

0

0

0

0

10

13

16

0

0

0

0

0

0

11

14

17

0

0

0

0

0

0

12

15

18

0

0

0

0

0

0

0

0

0

19

22

25

0

0

0

0

0

0

20

23

26

0

0

0

0

0

0

21

24

27

[image: image180.wmf]=

.

A

G

30

66

102

36

81

126

42

96

150

435

552

669

468

594

720

501

636

771

1326

1524

1722

1386

1593

1800

1446

1662

1878

CHECK:

[image: image181.wmf]=

.

C

C

30

66

102

36

81

126

42

96

150

[image: image182.wmf]=

.

D

D

435

552

669

468

594

720

501

636

771

[image: image183.wmf]=

.

E

E

1326

1524

1722

1386

1593

1800

1446

1662

1878

TO HALF MULTIPLY THE THREE MATRICES AND GET ALL THE SUB-MATRICES:

 [image: image184.wmf]I

1

0

0

0

4

0

0

0

7

 [image: image185.wmf]J

2

0

0

0

5

0

0

0

8

 [image: image186.wmf]K

3

0

0

0

6

0

0

0

9

[image: image187.wmf]L

10

0

0

0

13

0

0

0

16

[image: image188.wmf]M

11

0

0

0

14

0

0

0

15

[image: image189.wmf]N

12

0

0

0

15

0

0

0

16

[image: image190.wmf]O

19

0

0

0

22

0

0

0

25

[image: image191.wmf]P

20

0

0

0

23

0

0

0

26

[image: image192.wmf]Q

21

0

0

0

24

0

0

0

27

 [image: image193.wmf]=

.

I

C

1

16

49

2

20

56

3

24

63

 [image: image194.wmf]=

.

J

D

20

65

128

22

70

136

24

75

144

[image: image195.wmf]=

.

K

E

57

132

225

60

138

234

63

144

243

[image: image196.wmf]=

.

L

C

10

52

112

20

65

128

30

78

144

[image: image197.wmf]=

.

M

D

110

182

240

121

196

255

132

210

270

[image: image198.wmf]=

.

N

E

228

330

400

240

345

416

252

360

432

[image: image199.wmf]=

.

O

C

19

88

175

38

110

200

57

132

225

[image: image200.wmf]=

.

P

D

200

299

416

220

322

442

240

345

468

[image: image201.wmf]=

.

Q

E

399

528

675

420

552

702

441

576

729

[image: image202.wmf]H

1

0

0

10

0

0

19

0

0

0

4

0

0

13

0

0

22

0

0

0

7

0

0

16

0

0

25

2

0

0

11

0

0

20

0

0

0

5

0

0

14

0

0

23

0

0

0

8

0

0

17

0

0

26

3

0

0

12

0

0

21

0

0

0

6

0

0

15

0

0

24

0

0

0

9

0

0

18

0

0

27

 [image: image203.wmf]G

1

4

7

0

0

0

0

0

0

2

5

8

0

0

0

0

0

0

3

6

9

0

0

0

0

0

0

0

0

0

10

13

16

0

0

0

0

0

0

11

14

17

0

0

0

0

0

0

12

15

18

0

0

0

0

0

0

0

0

0

19

22

25

0

0

0

0

0

0

20

23

26

0

0

0

0

0

0

21

24

27

[image: image204.wmf]=

.

H

G

1

16

49

10

52

112

19

88

175

2

20

56

20

65

128

38

110

200

3

24

63

30

78

144

57

132

225

20

65

128

110

182

272

200

299

416

22

70

136

121

196

289

220

322

442

24

75

144

132

210

306

240

345

468

57

132

225

228

330

450

399

528

675

60

138

234

240

345

468

420

552

702

63

144

243

252

360

486

441

576

729

Suppose the matrices in the nested array are not all the same dimensions, this is how we can multiply them and halfmultiply them.

[image: image205.wmf]I

1

4

7

10

2

5

8

11

3

6

9

12

 [image: image206.wmf]J

10

14

18

11

15

19

12

16

20

13

17

21

 [image: image207.wmf]K

22

27

23

28

24

29

25

30

26

31

We make the nested array. Remember, MathCad cannot compute with nested arrays, so we just remove the brackets and “remember” that they are there. To make the nested array conformable, we must add zero’s where necessary to complete the array and legalize it mathematically.

[image: image208.wmf]L

1

4

7

10

2

5

8

11

3

6

9

12

10

14

18

0

11

15

19

0

12

16

20

0

13

17

21

0

22

27

0

0

23

28

0

0

24

29

0

0

25

30

0

0

26

31

0

0

Or diagonalizing L we get:

[image: image209.wmf]M

1

4

7

10

0

0

0

0

0

0

0

0

2

5

8

11

0

0

0

0

0

0

0

0

3

6

9

12

0

0

0

0

0

0

0

0

0

0

0

0

10

14

18

0

0

0

0

0

0

0

0

0

11

15

19

0

0

0

0

0

0

0

0

0

12

16

20

0

0

0

0

0

0

0

0

0

13

17

21

0

0

0

0

0

0

0

0

0

0

0

0

0

22

27

0

0

0

0

0

0

0

0

0

0

23

28

0

0

0

0

0

0

0

0

0

0

24

29

0

0

0

0

0

0

0

0

0

0

25

30

0

0

0

0

0

0

0

0

0

0

26

31

0

0

[image: image210.wmf]=

T

M

1

2

3

0

0

0

0

0

0

0

0

0

4

5

6

0

0

0

0

0

0

0

0

0

7

8

9

0

0

0

0

0

0

0

0

0

10

11

12

0

0

0

0

0

0

0

0

0

0

0

0

10

11

12

13

0

0

0

0

0

0

0

0

14

15

16

17

0

0

0

0

0

0

0

0

18

19

20

21

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

22

23

24

25

26

0

0

0

0

0

0

0

27

28

29

30

31

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

L=12,4 M=12,12

WE CAN MULTIPLY THIS IN A CONDENSED MANNER ONLY ONE WAY, BECAUSE KTxK WOULD EQUAL A 5x5 MATRIX, WHICH IS OUT OF BOUNDS (INDICES DON'T CONFORM).

[image: image211.wmf]=

.

L

T

M

14

32

50

68

32

77

122

167

50

122

194

266

68

167

266

365

534

718

902

0

718

966

1214

0

902

1214

1526

0

0

0

0

0

2890

3490

0

0

3490

4215

0

0

0

0

0

0

0

0

0

0

[image: image212.wmf]I

1

4

7

10

2

5

8

11

3

6

9

12

 [image: image213.wmf]J

10

14

18

11

15

19

12

16

20

13

17

21

 [image: image214.wmf]K

22

27

23

28

24

29

25

30

26

31

[image: image215.wmf]=

.

M

T

L

14

32

50

68

534

718

902

0

2890

3490

0

0

32

77

122

167

718

966

1214

0

3490

4215

0

0

50

122

194

266

902

1214

1526

0

0

0

0

0

68

167

266

365

0

0

0

0

0

0

0

0

[image: image216.wmf]=

.

I

T

I

14

32

50

68

32

77

122

167

50

122

194

266

68

167

266

365

[image: image217.wmf]=

.

T

I

I

166

188

210

188

214

240

210

240

270

[image: image218.wmf]=

.

T

J

J

620

662

704

746

662

707

752

797

704

752

800

848

746

797

848

899

[image: image219.wmf]=

.

J

T

J

534

718

902

718

966

1214

902

1214

1526

[image: image220.wmf]=

.

K

T

K

2890

3490

3490

4215

[image: image221.wmf]=

.

T

K

K

1213

1262

1311

1360

1409

1262

1313

1364

1415

1466

1311

1364

1417

1470

1523

1360

1415

1470

1525

1580

1409

1466

1523

1580

1637

BUT WE CAN MULTIPLY BOTH WAYS BY COMPUTING WITH THE DIAGONALIZED NESTED ARRAYS IN THIS MANNER:

[image: image222.wmf]=

.

T

M

M

166

188

210

0

0

0

0

0

0

0

0

0

188

214

240

0

0

0

0

0

0

0

0

0

210

240

270

0

0

0

0

0

0

0

0

0

0

0

0

620

662

704

746

0

0

0

0

0

0

0

0

662

707

752

797

0

0

0

0

0

0

0

0

704

752

800

848

0

0

0

0

0

0

0

0

746

797

848

899

0

0

0

0

0

0

0

0

0

0

0

0

1213

1262

1311

1360

1409

0

0

0

0

0

0

0

1262

1313

1364

1415

1466

0

0

0

0

0

0

0

1311

1364

1417

1470

1523

0

0

0

0

0

0

0

1360

1415

1470

1525

1580

0

0

0

0

0

0

0

1409

1466

1523

1580

1637

[image: image223.wmf]=

.

M

T

M

14

32

50

68

0

0

0

0

0

0

0

0

32

77

122

167

0

0

0

0

0

0

0

0

50

122

194

266

0

0

0

0

0

0

0

0

68

167

266

365

0

0

0

0

0

0

0

0

0

0

0

0

534

718

902

0

0

0

0

0

0

0

0

0

718

966

1214

0

0

0

0

0

0

0

0

0

902

1214

1526

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2890

3490

0

0

0

0

0

0

0

0

0

0

3490

4215

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Which gives us the product multiplying both ways.

Now let’s half multiply the nested array. Remember, computers cannot o multiply yet, this is a new discovery, so we must multiply by it’s equivalent diagonal matrix operator to get the solution.

[image: image224.wmf]N

1

0

0

0

10

0

0

0

22

0

0

0

0

4

0

0

0

14

0

0

0

27

0

0

0

0

7

0

0

0

18

0

0

0

0

0

0

0

0

10

0

0

0

0

0

0

0

0

2

0

0

0

11

0

0

0

23

0

0

0

0

5

0

0

0

15

0

0

0

28

0

0

0

0

8

0

0

0

19

0

0

0

0

0

0

0

0

11

0

0

0

0

0

0

0

0

3

0

0

0

12

0

0

0

24

0

0

0

0

6

0

0

0

16

0

0

0

29

0

0

0

0

9

0

0

0

20

0

0

0

0

0

0

0

0

12

0

0

0

0

0

0

0

0

0

0

0

0

13

0

0

0

25

0

0

0

0

0

0

0

0

17

0

0

0

30

0

0

0

0

0

0

0

0

21

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

 [image: image225.wmf]O

0

0

0

0

0

0

0

0

26

0

0

0

0

0

0

0

0

0

0

0

0

31

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

[image: image226.wmf]P

augment

(

)

,

N

O

[image: image227.wmf]=

P

1

0

0

0

10

0

0

0

22

0

0

0

0

4

0

0

0

14

0

0

0

27

0

0

0

0

7

0

0

0

18

0

0

0

0

0

0

0

0

10

0

0

0

0

0

0

0

0

2

0

0

0

11

0

0

0

23

0

0

0

0

5

0

0

0

15

0

0

0

28

0

0

0

0

8

0

0

0

19

0

0

0

0

0

0

0

0

11

0

0

0

0

0

0

0

0

3

0

0

0

12

0

0

0

24

0

0

0

0

6

0

0

0

16

0

0

0

29

0

0

0

0

9

0

0

0

20

0

0

0

0

0

0

0

0

12

0

0

0

0

0

0

0

0

0

0

0

0

13

0

0

0

25

0

0

0

0

0

0

0

0

17

0

0

0

30

0

0

0

0

0

0

0

0

21

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

26

0

0

0

0

0

0

0

0

0

0

0

0

31

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

This multiplication gives us the transpose of the half-multiplication. Note the nested arrays are separated better than in the other multiplication.

[image: image228.wmf]=

.

T

M

P

1

2

3

100

110

120

130

484

506

528

550

572

16

20

24

196

210

224

238

729

756

783

810

837

49

56

63

324

342

360

378

0

0

0

0

0

100

110

120

0

0

0

0

0

0

0

0

0

2

4

6

110

121

132

143

506

529

552

575

598

20

25

30

210

225

240

255

756

784

812

840

868

56

64

72

342

361

380

399

0

0

0

0

0

110

121

132

0

0

0

0

0

0

0

0

0

3

6

9

120

132

144

156

528

552

576

600

624

24

30

36

224

240

256

272

783

812

841

870

899

63

72

81

360

380

400

420

0

0

0

0

0

120

132

144

0

0

0

0

0

0

0

0

0

0

0

0

130

143

156

169

550

575

600

625

650

0

0

0

238

255

272

289

810

840

870

900

930

0

0

0

378

399

420

441

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

572

598

624

650

676

0

0

0

0

0

0

0

837

868

899

930

961

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

[image: image229.wmf]=

.

T

P

M

1

16

49

100

2

20

56

110

3

24

63

120

0

0

0

0

0

0

0

0

2

20

56

110

4

25

64

121

6

30

72

132

0

0

0

0

0

0

0

0

3

24

63

120

6

30

72

132

9

36

81

144

0

0

0

0

0

0

0

0

100

196

324

0

110

210

342

0

120

224

360

0

130

238

378

0

0

0

0

0

110

210

342

0

121

225

361

0

132

240

380

0

143

255

399

0

0

0

0

0

120

224

360

0

132

240

380

0

144

256

400

0

156

272

420

0

0

0

0

0

130

238

378

0

143

255

399

0

156

272

420

0

169

289

441

0

0

0

0

0

484

729

0

0

506

756

0

0

528

783

0

0

550

810

0

0

572

837

0

0

506

756

0

0

529

784

0

0

552

812

0

0

575

840

0

0

598

868

0

0

528

783

0

0

552

812

0

0

576

841

0

0

600

870

0

0

624

899

0

0

550

810

0

0

575

840

0

0

600

870

0

0

625

900

0

0

650

930

0

0

572

837

0

0

598

868

0

0

624

899

0

0

650

930

0

0

676

961

0

0

CHECK:

[image: image230.wmf]=

.

1

0

0

0

0

4

0

0

0

0

7

0

0

0

0

10

1

4

7

10

2

5

8

11

3

6

9

12

1

16

49

100

2

20

56

110

3

24

63

120

[image: image231.wmf]=

.

2

0

0

0

0

5

0

0

0

0

8

0

0

0

0

11

1

4

7

10

2

5

8

11

3

6

9

12

2

20

56

110

4

25

64

121

6

30

72

132

[image: image232.wmf]=

.

11

0

0

0

15

0

0

0

19

10

14

18

11

15

19

12

16

20

13

17

21

110

210

342

121

225

361

132

240

380

143

255

399

[image: image233.wmf]=

.

10

0

0

0

14

0

0

0

18

10

14

18

11

15

19

12

16

20

13

17

21

100

196

324

110

210

342

120

224

360

130

238

378

[image: image234.wmf]=

.

22

0

0

27

22

27

23

28

24

29

25

30

26

31

484

729

506

756

528

783

550

810

572

837

[image: image235.wmf]=

.

26

0

0

31

22

27

23

28

24

29

25

30

26

31

572

837

598

868

624

899

650

930

676

961

THE THEORY OF INFORMATION

AND

THE UNIFIED FIELD EQUATION

FOR EVERY NUMERICAL OPERATION THAT EXISTS, THERE EXISTS A MATRIX OPERATION THAT WILL REPEAT THAT OPERATION ixj TIMES FOR ADDITION AND SUBTRACTION, OR (ixj)(jxk) TIMES FOR MULTIPLICATION.

Suppose we have a thousand numbers that we have to add to another thousand numbers.

The form is A+B=C. There exists a matrix [A]ij + [B]ij = [C]ij that will add A + B ixj times, all at the same time under one mathematical operation.

Suppose we have A x B ± C = 0. This has four matrix solutions, two additive and two multiplicative.

OPERATION TAKEN ONE AT A TIME

MATRIX EQUIVALENT

A x B = C

[A]ij[B]jk = [C]ik
MULTIPLICATIVE (indices change)

A x B = -C

[A]ij[B]jk = -[C]ik
MULTIPLICATIVE (indices change)

A x B + C = 0

[A]Tij o [B]jk = -[C]jk
ADDITIVE (indices don’t change)

A x B - C = 0

[A]Tij o [B]jk = [C]jk
ADDITIVE (indices don’t change)

There are actually an infinite number of combinations. Suppose we have A/B = C, the matrix equivalents would be [A]ij[B]-1jk = [C]ik and/or [A]Tij o [B]-1jk = [C]jk; for A x B x C = D

the matric equivalents are [A]ij[B]jk[C]kL = [D]IL or [A]Tij o [B]jk [C]kL = [D]iL or

([A]Tij o [B]jk)T o [C]kL = [D]iL . Whatever the problem, there is a matrix solution that will solve everything all in one operation instead of perhaps thousands of separate operations conducted one at a time.

There is one equation above that seems to be really important, so I am going to concentrate mainly on this one. It is the equation [A]Tij o [B]jk = [C]jk . This looked so similar to Einstein’s First Field Equation in his theory of gravitation that I just had to explore it further. It was this exploration that leads me to believe that this is the Unified Field Equation.

[A]Tij o [B]jk = [C]jk describes a universal Inventory/Accounting system. If we multiply this equation through by a constant c, the equation is converted to a physics or statistics field equation. All we need to do is define c, [B] and [A]. Let’s look at some examples.

CLASSICAL PHYSICS

C([A]Tij o [B]jk)= [C]jk

Let c = m, and [B]jk = [a]jk (acceleration) and [C]jk = Fjk, then

[C]jk = m([A]Tij o [B]jk) but [A]ij = [I]jj and [B]jk = [a]jk and [C]jk = Fjk, so

Fjk = m([I]jj o [a]jk) for m = to a constant.

Fjk = m([a]jk)

If [A]ij ([I]jj , then we have

Fjk = m([A]Tij o [a]jk)
NOTE: We may be able to express this backwards, I don’t know. I mean, if [A]ij = [a]ij, [B]jk =[I]jk and [C]ij = Fij.

Then Fij = m([a]ij) and Fij = m([a]Tij o [B]jk)

Since there is a connection between Accounting/Inventories and Statistics..there ought to be a connection between Physics and Statistics…lets check out the Between association:

Fjk = m([A]Tij o [a]jk)

m([1]([A]Tij o [a]jk)2 = [C]2jk

If [A]ij = [I] this equation reduces to:
m([1]1,j[a]jk)2 = [C]2jk

But since this is statistics, we might have to divide by N, not sure..then the equation connecting statistics to physics becomes:

m/N([1]1,j[a]jk [DB]kl)2 = [C]2kl

But this is the equation of statistics for regular matrix multiplication. Can find for Astro-physics in the same way.

EINSTEIN’S FIELD EQUATION FOR GRAVITATION

 C([A]Tij o [B]jk) = [C]jk

Let [C]jk = [G]jk , [B]jk = [T]ij and [A]ij = [I]jj and c = 8((.

Then we have:

8((([A]Tij o[T]jk) = [G]jk but [A]ij = [I]jj so we have

8(([T]jk = [G]jk which is Einstein’s First Field Equation. This is the equation as we now understand it, but the true equation might be 8((([A]Tij o[T]jk) = [G]jk.

Let’s see if we can derive a wave equation for gravity from this equation.

Let’s multiply Einstein’s equation through by the wave function (T(.

(T8(([T]jk(= (T[G]jk(but G is an energy term and , 8((is a constant. The equation becomes:

8(((T[T]jk(= [G]jk (T (

and therefore

[G]jk = 8(((T[T]jk(

8(((T([A]Tij o [T]jk)(

or [G]jk =

 (T (

(T (
Gjk is now solvable.

Astrophysicists say Einstein’s equation is not complete. Knowing nothing about Astrophysics, I assume the mass term is included in the stress-metric tensor Tjk. Since Einstein’s equation resembles Newton’s equation, I suggest that the mass term may need to be removed from Tjk and hollow dotted into it. i.e.

[G]jk = 8((([m]Tij o [T]jk) or
[G]jk = 8(([m]Tij o ([A]Tij o [T]jk)

or maybe: [G]jk = 8((m([A]Tij o [T]jk) I’m not sure which is correct.

Which has the form of Newton’s Second Equation.

This is all I can do with the math for this kind of mathematics. I never could get a handle on the Geometrodynamics equations of Space-time. I have no idea how to solve it or use it. Are there any astrophysicists out there who can make any sense out of it?

Einsteins Equation and Statistics:

Gjk = 8((([A]Tij o [T]jk)

8((([1]([A]Tij o [T]jk)2 = [C]2jk

If [A]ij = [I] this equation reduces to:
8((([1]1,j[T]jk [DB]kl)2 = [C]2kl

But since this is statistics, we might have to divide by N, not sure..then the equation connecting statistics to physics becomes:

8((/N([1]1,j[T]jk [DB]kl)2 = [C]2kl

But this is the equation of statistics for regular matrix multiplication.

STATISTICS

There was, until now, no field equation describing the field of statistics.

Going back to the Unified Field Equation:

C([A]Tij o [B]jk)= [C]jk and for the simple case, letting [B]jk = [I]jk and c = 1/N, the equation becomes: (this means there is no database matrix to multiply to, we manipulate only the data directly on matrix [A].)

1/N([A]Tij o [B]jk)= [C]jk =1/N([A]Tij o [I]jk)= 1/N([A]Tij) = [C]ij

Since [A][I] is a straight multiplication problem, we do not need to transpose it. But we do need to sum the columns of [A], so the basic statistical equation becomes:

1/N([1]1,I[A]ij) = [C]1j
But to make this statistical, we must square the above expression so that it becomes:

1/N([1]1,i[A]ij)2 = [C]21j
Where [C]21j = CCT. (this gives us a one by one matrix as a solution).

Suppose [B]jk is not = to [I]jk. Then we have our basic complex statistical field equation, the simplest form of which is the Analysis of Variance. This is a straight multiplication so [A] does not need to be transposed. (We could transpose [A] first, and then sum the columns in a second operation). Therefore the standard complex statistical equation becomes:

1/N([1]1,i[A]ij[B]jk)2 = [C]21,k where [C]2 = CCT
But we also need to subtract the correction factor(s), so the total statistical field equation becomes:

1/N([1]1,i[A]ij[B]jk)2 - correction factor(s) = C21,k - correction factor(s).

Note, there are no (’s anywhere, since this approach to statistics is derived from Accounting and Inventories rather than random variables.

So there are only 3, perhaps 4 operators from which statistics (perhaps all of statistics) may be computed:

1/2(([A]Tij o [B]jk = i Cjk matrices (Half-Multiplier mode)

(where i = #rows in un-transposed matrix)

 C(1/N([A]Tij o [B]jk) = 1/N[C]ik regular matrix multiplication.

R(1/N([A]Tij o [B]jk) = 1/N([B]jk[1]k,1o[A]Tij)

M(1/N([A]Tij o [B]jk) = 1/N([A]Tij[1]i,1o[B]jk)

Note: These equations also hold for Physics, Astrophysics and Inventory/Accounting systems also.

The mathematics also suggests that we may be able to create a quantum statistics (or perhaps quantum accounting/inventories?). Or more fundamentally, a quantum probability. What I am going to derive I will give an example of at the end of the section of statistics. I do not know how to interpret the solution, that will be left to the professional statisticians.

Suppose we have completed the experimental data on an experiment and put into the matrix form [A]MN. Now [A]MN is not a square matrix, so we must make a square out of it before we can do any sort of quantum statistical analysis on it. Squaring the data changes the matrix [A] from a statistical matrix to a probability matrix. To keep track of each of the sums of the squares for each column in the matrix, we must square it such that we end up with an NxN matrix.

[A]TMN[A]MN = [A]NM[A]MN = [A]2NN

Then we do the following:

1/N[DB1]iN [A]2NN[DB1]TiN

1/N[DB1]iN [A]2NN[DB1]Ni
 1/N[DB1]iN [A]2NN[DB1]Ni

=

=

 =

 [DB1]iN[DB1]TiN

 [DB1]iN[DB1]Ni

 [DB1]2ii

1/N[C]2ii

 [DB1]2ii

Now statistics and probability are directly associated with each other. How, for instance, can we compute 5! ? That is 5x4x3x2x1=120? Easy!

 Anti-log(Log ([5 4 3 2 1])
 1)

 1

 1
= 120

 1

 1

Of course, we don’t have to just use [DB1], we can use any of the database matrices that are pertinent to the analysis under scrutiny.

DERIVATION OF QUANTUM MECHANICS FROM EINSTEIN’S EQUATION

Since we have already derived Einstein’s equation above, I’ll start with it here.

8(((T[T]jk(
[G]jk =

 (T (

Since we are not dealing with stars, but with atoms, the stress-metric tensor Tjk may be simplified by calling it the Hamiltonian of the system. We are also not interested in the gravitational attraction of an atom, but with the total energy of its electro-magnetic field, or the total energy E. The constant at this time is unknown and will revert to c. Substituting the new values into Einstein’s equation (if it is a true field equation, it should be true for all of physics) we get:

c (Tjk[H]jk(jk

c(T([A]Tij o [H]jk)(
Ejk

or [E]jk =

 (T (

(T (
Physics and astrophysics field equations are already known, so it should be simple for people proficient in these fields to check the correctness of these derivations. The field equations for statistics and Accounting/Inventory systems are brand new and have not been discovered before.

INVENTORY/ACCOUNTING SYSTEM:

[A]Tij o [B]jk = [C]jk =

[INV]ij[DB]jk = [SOL]ik This is the sum total of everything bought, sold, manufactured, etc.

i[A]Tij o [B]jk = i[C]jk =

i[INV]Tij o [DB]jk = i[AP]jk This keeps and individual item accounting of everything bought, sold, manufactured, etc. The superscript i just tells us which row in the un-transposed matrix we have hollow-dotted onto the [DB] matrix.

j[B]jk o [A]Tij = j[C]jk =
j[DB]jk o [INV]Tij = j[IP]jk This takes an individual item from the database matrix (a column) and multiplies it across the inventory(or accounting page if we wish) giving us a slice of the total pie, so to speak. It tells us how much of that item was used, by whom or what machine or smokestack, and shows how it is distributed throughout the total inventory. This one is best used taken one item at a time. If we want two items at a time, we have to add them together and compute a total for both. It would be like saying 35 apples and oranges instead of 15 apples and 20 oranges.

[A]Tij o [B]jk = i, [C]jk sub-matrices .

[INV]Tij o [DB]jk = i, [SOL]jk sub-matrices

 This is the pure half-multiplier operation giving all the accountpage matrices, i of them, in a single operation.

PHILOSOPHY

There are more things under these heavens and earth than are dreamed of in your philosophy, Horatio. W. Shakespeare

In the history of mathematics, the origins of math follow two seemingly separate paths. The first was when man kept track of the rising of the sun to predict the seasons and later to predict eclipses. Careful records were kept, even of the positions of the planets. This system of accounting was discarded with the advent of Newton’s three equations of motion when modern physics was developed. The second system of mathematics was developed to keep track of what merchants and kings owned, what was owed them, and how much they owed to others. This system developed into modern accounting systems. Two seemingly different mathematical systems. With the half-multiplier operator, the two divergent systems are again brought together under the dominion of a single equation. Mathematics has now returned to it’s roots. A chapter in the history of math is now closed and a new chapter is open for exploration. The half-multiplier operator seems to say that the universe prefers matrices rather than partial differential equations and the calculus professional mathematicians and physicists have developed to explain the nature of matter and energy. This is the missing operator, the missing link in math, so to speak, that has been right under the noses of everyone but has escaped notice until now. They use the math all the time but have never consolidated it into one comprehensive set of proofs that I try to develop in this book. My proofs may be sloppy, it has been 19 years since I solved a math problem more difficult than a simple proportion, but they seem to hold for the whole of mathematics. Mathematicians say that 3x2=6 in most cases, but not in all cases. I prove here that 3x2=6 in all cases, even though mathematicians some 200 to 300 years ago said that what I am about to show you is impossible to do. Because everyone believed this, they missed out on discovering one of the most beautiful mathematical operator’s of all. This is basically all that this book is about, that the operation of multiplication holds in all cases i.e., 5x2=10 no matter how you multiply it. With this simple premise, we can do all our mathematical operations at the same time instead of doing just one calculation at a time.

There seems to be a direct relationship between ordinary addition, subtraction, multiplication, division and matrices. Suppose we want to add the numbers

 24
We can re-write this as

-11

 9

 44

 -6

[image: image236.wmf]1

1

1

1

1

[image: image237.wmf]o

[image: image238.wmf]24

16

11

9

44

=
[image: image239.wmf]=

.

(

)

1

1

1

1

1

24

16

11

9

44

6

Transposing and multiplying sums the numbers for us.

Suppose we wish to subtract 99, 22, 111 and 55 from 333. Ordinary subtraction looks like:

[image: image240.wmf]1

1

1

1

1

 o[image: image241.wmf]333

99

22

111

55

=
[image: image242.wmf]1

1

1

1

1

 o[image: image243.wmf]333

99

22

111

55

=
[image: image244.wmf]=

.

(

)

1

1

1

1

1

333

99

22

111

55

46

So here we can convert ordinary addition and subtraction to matrix multiplication. This simple conversion is the missing link of mathematics, it is the matrix/tensor connection to our real number system operations of addition and subtraction. That is, if the pre-multiplier is a matrix all of one’s, we are adding/subtracting the numbers in the columns of the post-multiplier matrix.

The operations of multiplication and division we know about intuitively (because no one has proven it except for me) from it’s use in Gaussian reduction. i.e. 3x6=18, by using the half-multiplier we get the equal, but trivial equation [3]T o [6] = 18. Suppose we need to multiply 3x6, 4x5, 9x3, 22x11 and 7x11. I want to subtract the second product from the first, ignore the third product, double the fourth product and subtract and triple the fifth product and add. We have:

[image: image245.wmf]1

1

0

2

3

 o[image: image246.wmf]3

4

9

22

7

 o[image: image247.wmf]6

5

3

11

11

=
[image: image248.wmf]=

.

T

.

1

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

2

0

0

0

0

0

3

3

4

9

22

7

6

5

3

11

11

255

Or it is equal to:

[image: image249.wmf]=

.

(

)

3

4

0

44

21

6

5

3

11

11

255

Or in terms of Mathcad programs:

[image: image250.wmf]=

.

T

.

1

1

0

2

3

3

4

9

22

7

6

5

3

11

11

255

The three hollow dot multiplication’s on the left are illegal according to modern math, diagonalizing the first column and multiplying to the second column matrix is legal (I do it this way because it is the only way a computer or calculator can come up with the same solution, no one has ever thought about multiplying matrices in this manner before). And yet, what the hollow dot multiplication on the far left is saying is

 1x3x6 = 18

-1x4x5 = -20

 0x9x3 = 0

-2x22x11 = -484

 3x7x11 = 231

Summing the separate answers we get 18 - 20 + 0 - 484 + 231 = -255.

Division is carried out the same as multiplication except we multiply by the inverse of the divisor.

This is all there is to this operator. In every case, there is an operation we already know and use that can be used to compute the solution. But look at the problem above. If we totally half-multiply all the numbers, we go through 15 separate multiplication’s and 5 sums for a total of 20 operations. When we have to diagonalize, the diagonal times the second column needs 25 multiplication’s and 25 sums. We then transpose this first product and multiply again to the third column matrix, needing 5 multiplication’s and 5 sums. This is a total of 25+25+5+5 = 60 separate mathematical operations to compute the same answer as 20 steps using the half-multiplier. That’s three times as many. If the problem concerned column matrices a million rows long, diagonalizing would produce a square matrix of dimensions 1x106 x 1x106 with 1x1012 elements, that would be a trillion elements, all zero’s except the diagonal. So we would need to perform a trillion multiplication’s and a trillion sums instead of a million multiplication’s and a million sums. Quite a savings on computer memory. Actually, MathCad +6 can perform this half-multiplication using the vectorize operation, but it cannot perform the following multiplication’s. Suppose we have the following 3x3 matrix, and we wish to multiply the first row by 3, the second row by 4 and the third row by 5. This is also illegal according to mathematicians, but they do it all the time when they use Gaussian reduction. i.e.

3
1 2 3
 3 0 0 1 2 3
 3 6 9

4 o
4 5 6
= 0 4 0 4 5 6 =
16 20 24

5
7 8 9
 0 0 5 7 8 9
35 40 45

Suppose, on the other hand, we wish to multiply the first column in the 3x3 matrix by 3, the second column by 4 and the third column by 5. We proceed as follows:

1 2 3
 3
1 2 3
3 0 0
 3 8 15

4 5 6
 4 =
4 5 6
0 4 0
= 12 20 30

7 8 9
 5
7 8 9
0 0 5
 21 32 45

These are important, because suppose we wish to deal only with the second row in the matrix and get rid of the first and third rows. We proceed as follows:

0 0 0
1 2 3
 0 0 0

0 1 0
4 5 6
= 4 5 6

0 0 0
7 8 9
 0 0 0 .

Or suppose we want only the first and third columns of the matrix, and ignore the middle column. We proceed as follows:

1 2 3
1 0 0
 1 0 3

4 5 6
0 0 0
= 4 0 6

7 8 9
0 0 1
 7 0 9

These are very important properties in accounting and inventories and statistics, especially when we have a large amount of data, but wish to compare only two or so columns or rows with each other in statistics, or to find the individual accountpage and itempage matrices in the generalized accounting/inventory system. These you will see more of in the examples to follow.

But, you might say, by the definition I give, that

1 2 3
 3
 3
 6
 9

 3 6 9

4 5 6 o
 4 =
16
20
24
and is also equivalent to
16 20 24

7 8 9
 5
35
40
45

35 40 45

Depending upon which way we multiply. Right to left for the nested array and left to right for the larger single 3x3 matrix. Our choice, depending on the information we wish to obtain from the system. The nested array is ready for a transpose and further manipulation as a larger column matrix (in this case, a 9x1 column matrix), or just to separate the answers into separate arrays (for printing purposes say) or the matrix can be used any way we can use a regular 3x3 matrix.

I will show later (I can’t prove it) that when we are done with the math, we can drop the inner or the outer brackets of the nested array to obtain either three 3x1 matrices or one 3x3 matrix, whatever form we desire the solution to be. Matrices are freewheeling and we can do almost anything with them that we can do with single numbers, just as long as we keep to the rules of regular mathematics.

There is one further thing to notice. When we transpose the pre-multiplier matrix and half-multiply across the post-multiplier matrix, the transposed matrix becomes like a real set of numbers and is not like a matrix anymore. So just as we can take the square root of a single number, or the log of a single number, we can now take the square root of every number individually or the log of each number individually, all at the same time. If we then re-transpose the pre-multiplier matrix, it is in tensor or matrix form and we can multiply the matrices as they are now defined.

So now the concept of number has been re-defined. Just as 1, 2, 3, . . . are considered individual numbers, now

1 2 3
can be considered as a single number with all the properties of a single number.

4 5 6

7 8 9

But just as 1 + 1 = 2, the dimensions must be the same or conform with the rules of matrix multiplication. i.e.

Suppose we wish to multiply the two following numbers as we would two regular numbers:

1 2 3

9 8 7

 9 16 21

4 5 6
 
6 5 4 =
24 25 24

7 8 9

3 2 1

21 16 9

Or we may add all the numbers at the same time, just as long as the matrices are the same size:

1 2 3

9 8 7

10 10 10

4 5 6
 
6 5 4 =
10 10 10

7 8 9

3 2 1

10 10 10

The former multiplication is very illegal in mathematics, but can anyone out there prove to me that 8x2 (16? Or 9x1 (9? This I would like to see. Not only is this multiplication legal, but it works! We cannot multiply all numbers in all problems at the same time without it. Statistics as a branch of mathematics would fall apart without it. But because mathematicians say it is illegal, statisticians must solve statistical problems the hard way, one multiplication and sum at a time, rather than all at once in one simplified operation.
GENERALIZED INVENTORY/ACCOUNTING SYSTEM

Let [A]ij = Inventory matrix

Let [B]jk = Database matrix

Then

[A]ij [B]jk = Cik = [SOL]ik

[INV]ij[DB]jk = [SOL]ik

where Cik = solution matrix for the inventory.

And

[A]Tij o [B]jk = Djk = [AP]jk
[INV]Tij o [DB]jk = [AP]jk
Where Djk = [AP]jk = the accounting matrix.

And

 (
[A]Tij o [B]jk = Ijk = [IP]jk

 (
[INV]Tij o [DB]jk = [IP]jk
Where Ijk = [IP]jk = The Itempage matrix.

The connection between the accounting/inventory field equation and statistics is given by:

[INV]ij[DB]jk = [SOL]ik
1/N([1]1,i[INV]ij[DBi]jk)2 = [SOL]1,k[SOL]k,1T - CORRECTION FACTOR

The best way to show how the inventory system works is to work an example. The first example will be a chemical usage inventory (CUI). For the following example:

1. the number of chemicals with unknown fractions = 9 = j.

2. the number of reportable chemical fractions = 15 = k.

3. the number of machines using smokestacks + one total inventory = 8 machines + 1 total inventory = 8 + 1 = 9 = i.

Therefore, the dimensional analysis of this example inventory =

1.
For inventory:
[A]ij [B]jk = Cik =[A]9,9 [B]9,15 = C9,15

2.
For Accounting: [A]Tij o [B]jk = Djk = [A]T9,9 o [B]9,15 = D9,15

 (

 (

For Itempage:
[A]Tij o [B]jk = Ijk = [A]T9,9 o [B]9,15 = I9,15
THE INVENTORY MATRIX

We will write the inventory matrix first. We enter the inventory weights for the total yearly inventory (in pounds) in the first row of the matrix, for the second through 9th rows we will write the pounds of chemicals used in machines 1 through 8. Note: the sum of the columns 2 - 9 should equal the amount in the first row. i.e.

AP
CSS
DGP
FC-37
KFR-18
NW-3A
RW-41
TGC
ZON

TOTAL INVENTORY
5590
55366
725
8610
49547
 2750
 21649
11000
880

MACHINE #1
5590
41605
 0
 0
 0
 0
 0
 0
 0

MACHINE #2
 0
12863
 0
 0
 0
 0
 0
 0
 0

MACHINE #3

 0
898.1
 0
 0
 0
 0
 0
 0
 0

MACHINE #4

 0
 0
 0
 0
 0
 0
 0
 0
 0

MACHINE #5

 0
 0
362.5
 638
 0
 476.7
 10824.5 5500
826.2

MACHINE #6

 0
 0
362.5
4023
 0
 325.6
 10824.5 5500
 0

MACHINE #7

 0
 0
 0
3949.42
 4952.7
 1947.83 0
 0
53.8

MACHINE #8
 0
 0
 0
 0
44574.3
 0
 0
 0
 0

Note: For the column under CSS, summing rows 2 through 8, we get 41605+12863+898.1 = 55366.1 which is the total yearly use for all machines.

This finished matrix I will call [INV]9,9 . For HP-48G program, STO INV99.

THE DATABASE MATRIX

The matrix [B]jk is written directly from the MSDS sheets for each chemical listed. It is permanent and will not change unless new chemicals are added to the inventory, old chemicals are not used anymore, or the manufacturer changes the proportions of the ingredients. First we make a vertical list of the 9 chemicals we use. In a row across the top, make a column for each of the 15 chemical fractions. Using the MSDS sheets and doing one chemical at a time, go along the row to the column where the chemical fraction is listed and enter the percent of that chemical as a decimal. Where there are no chemicals present, enter a zero. Approximately 5% of the DB matrix will be chemical fractions, and 95% will be zero’s. I will call this matrix [DB]9,15 .

[image: image251.wmf]APE

 [image: image252.wmf]DPE

 [image: image253.wmf]NAP

 [image: image254.wmf]ISOP

 [image: image255.wmf]2

EH

 [image: image256.wmf]oDCB

 [image: image257.wmf]2EE

 [image: image258.wmf]EG

 [image: image259.wmf]AMM

 [image: image260.wmf]FORM

 [image: image261.wmf]2BA

 [image: image262.wmf]DIOX

 [image: image263.wmf]ACRYL

 [image: image264.wmf]DEG

 [image: image265.wmf]ACET

AP

.02 .06 0 0 0 0 0 0 0 0 0 0 0 0 0

CSS

 0 0 .12 .04 .10 .03 0 0 0 0 0 0 0 0 0

DGP

 0 0 0 .02 0 0 0 0 0 0 0 0 0 0 0

FC-37

 0 0 0 0 0 0 .0001 .001 0 0 0 0 0 0 0

KFR-18

 0 0 0 0 0 0 0 0 .01 0 0 0 0 0 0

NW-3A

 0 0 0 0 0 0 0 0 0 .006 0 0 0 0 0

RW-41

 0 0 0 0 0 0 0 0 0 .001 .0002 .0002 .0001 0 0

TGC

 0 0 0 0 0 0 0 0 0 .005 0 0 0 .02 0

ZON

 0 0 0 0 0 0 0 .04 0 0 0 0 0 0 .075

Where:

APE: ALKYL PHENOLIC ETHER

DPE: DIPHENYL ETHER

NAP: NAPTHALENE

ISOP: ISOPROPANOL

2-EH:2-ETHYLHEXANE

oDCB: ortho-DICHLOROBENZENE

2EE: 2 ETHOXYETHANOL

EG: ETHYLENE GLYCOL

AMM: AMMONIA

FORM: FORMALDEHYDE

2BA: 2-BUTYLALCOHOL

DIOX: DIOXANE

ACRYL: ACRYLALDEHYDE

DEG: DIETHYLENEGLYCOL

ACET: ACETONE

We will store this matrix in DB915.

PROGRAM FOR HP-48G

ENTER INV99

STO INV99

ENTER DB915

STO DB915

RCL DB915

RCL INV99

x

MATHCAD +6 PROGRAM

INV9,9*DB9,15 =

[image: image266.wmf]=

.

INV

,

9

9

DB

,

9

15

111.8

111.8

0

0

0

0

0

0

0

335.4

335.4

0

0

0

0

0

0

0

6643.92

4992.6

1543.56

107.772

0

0

0

0

0

2229.14

1664.2

514.52

35.924

0

7.25

7.25

0

0

5536.6

4160.5

1286.3

89.81

0

0

0

0

0

1660.98

1248.15

385.89

26.943

0

0

0

0

0

0.861

0

0

0

0

0.0638

0.4023

0.39494

0

43.81

0

0

0

0

33.686

4.023

6.10142

0

4954.7

0

0

0

0

0

0

495.27

4457.43

201.394

0

0

0

0

95.3072

94.4006

11.68698

0

4.3298

0

0

0

0

2.1649

2.1649

0

0

4.3298

0

0

0

0

2.1649

2.1649

0

0

2.1649

0

0

0

0

1.08245

1.08245

0

0

220

0

0

0

0

110

110

0

0

66

0

0

0

0

61.965

0

4.035

0

[SOL]9,15 = INV9,9*DB9,15
INTERPRETATION: In the total inventory (row 1) we used 6643.92 lbs naphthalene in 1995. Of this 6643.92 lbs, 4492.6 lbs were used in machine 1, 1543.56 lbs were used in machine 2 and 107.772 lbs were used in machine 3 and none was used in any other machine. Or we used 43.81 lbs ethylene glycol total for 1995, of which 33.686 lbs were used in machine 5, 4.023 lbs were used in machine 6 and 6.1014 lbs was used in machine 7, etc.

Suppose we are not a synthetic minor or title V user and only need the total inventory, but not any breakdown by machine. We just take the first row in the inventory matrix and multiply it to the DB9,15 matrix. Rather than write out a new row matrix for the inventory, we will compute it from the INV9,9 matrix.

[image: image267.wmf]R1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

[image: image268.wmf]R8

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

[image: image269.wmf]TOTALINV

.

.

R1

INV

,

9

9

DB

,

9

15

[image: image270.wmf]ONE9

(

)

1

1

1

1

1

1

1

1

1

[image: image271.wmf]TOTALINV1

.

ONE9

TOTALINV

[image: image272.wmf]=

TOTALINV1

111.8

335.4

6643.92

2229.14

5536.6

1660.98

0.861

43.81

4954.7

201.394

4.3298

4.3298

2.1649

220

66

(

)

Suppose we want the total inventory just for machine 7, then

FOR THE INVENTORY FOR MACHINE 7:

[image: image273.wmf]TOTALINV

.

.

R8

INV

,

9

9

DB

,

9

15

[image: image274.wmf]TOTALINV7

.

ONE9

TOTALINV

[image: image275.wmf]=

TOTALINV7

0

0

0

0

0

0

0.39494

6.10142

495.27

11.68698

0

0

0

0

4.035

(

)

Where R1 is the reduction matrix that returns only row one of INV9,9 upon multiplication, and R8 is the reduction matrix that returns only row 8 upon multiplication.

Suppose the EPA or the company managers wish to know only the throughput of machines 5,6 and 7, since they are the major users of the chemicals. Then

[image: image276.wmf]R567

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

[image: image277.wmf]TOTALINV

.

.

R567

INV

,

9

9

DB

,

9

15

[image: image278.wmf]TOTALINV567

.

ONE9

TOTALINV

[image: image279.wmf]=

TOTALINV

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

7.25

7.25

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.0638

0.4023

0.39494

0

0

0

0

0

0

33.686

4.023

6.10142

0

0

0

0

0

0

0

0

495.27

0

0

0

0

0

0

95.3072

94.4006

11.68698

0

0

0

0

0

0

2.1649

2.1649

0

0

0

0

0

0

0

2.1649

2.1649

0

0

0

0

0

0

0

1.08245

1.08245

0

0

0

0

0

0

0

110

110

0

0

0

0

0

0

0

61.965

0

4.035

0

[image: image280.wmf]=

TOTALINV567

0

0

0

14.5

0

0

0.86104

43.81042

495.27

201.39478

4.3298

4.3298

2.1649

220

66

(

)

ACCOUNTPAGE MATRIX FOR TOTAL INVENTORY: ROW 1

1[INV]T9,9 o [DB]9,15 = 1[AP]9,15

In the accountpage matrix, we can keep track of all the chemicals used in each machine, or keep track of the total inventory. The solution is the un-summed form of the inventory solution matrix. This solution remains a 9x15 matrix. If summed, it is the total inventory matrix for that particular machine. The 1 in the upper left hand corner of 1[INV] and 1[AP] means we are working with the first row transposed in the inventory matrix. For instance, for the total inventory, 1[AP]9,15 =

[image: image281.wmf]APE

 [image: image282.wmf]DPE

 [image: image283.wmf]NAP

 [image: image284.wmf]ISOP

 [image: image285.wmf]2

EH

 [image: image286.wmf]oDCB

 [image: image287.wmf]2EE

 [image: image288.wmf]EG

 [image: image289.wmf]AMM

 [image: image290.wmf]FORM

 [image: image291.wmf]2BA

 [image: image292.wmf]DIOX

 [image: image293.wmf]ACRYL

 [image: image294.wmf]DEG

 [image: image295.wmf]ACET

 5590
.02 .06 0 0 0 0 0 0 0 0 0 0 0 0 0

55371
 0 0 .12 .04 .10 .03 0 0 0 0 0 0 0 0 0

 725
 0 0 0 .02 0 0 0 0 0 0 0 0 0 0 0

 8630
 0 0 0 0 0 0 .0001 .001 0 0 0 0 0 0 0

49547 o
 0 0 0 0 0 0 0 0 .01 0 0 0 0 0 0

 2750
 0 0 0 0 0 0 0 0 0 .006 0 0 0 0 0

21649
 0 0 0 0 0 0 0 0 0 .001 .0002 .0002 .0001 0 0

11000
 0 0 0 0 0 0 0 0 0 .005 0 0 0 .02 0

 880
 0 0 0 0 0 0 0 .04 0 0 0 0 0 0 .075

But since the mathematics doesn’t exist in which this multiplication can take place, we must convert it to an equivalent form to multiply. i.e. We will take the column for the total inventory and make a diagonal matrix out of it and then multiply.

[image: image296.wmf]=

T

INV

,

9

9

5590

55366

725

8610

49547

2750

21649

11000

880

5590

41605

0

0

0

0

0

0

0

0

12863

0

0

0

0

0

0

0

0

898.1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

362.5

638

0

476.7

10824.5

5500

826.2

0

0

362.5

4023

0

325.6

10824.5

5500

0

0

0

0

3949.42

4952.7

1947.83

0

0

53.8

0

0

0

0

44574.3

0

0

0

0

Here I transpose [1]1,9 to [1]9,1 so I can post-multiply to sum the rows

AP = INV9,9[R1]9,9[1]9,1 This multiplication returns only column 1 of the transposed inventory matrix

Here I diagonalize the above column matrix

AP1 = [DIAGAP]9,9[DB]9,15 The accountpage matrix for the total inventory

INTERPRETATION: In 1995, we used a total of 111.8 lbs of alkyl phenolic ether in chemical AP. The chemical CSS (row 2), of which the company used 55,366 lbs in 1995, used 6643.92 lbs naphthalene, 2214.64 lbs of isopropanol, 5536.6 lbs of 2-ethylhexane and 1660.98 lbs of o-dichlorobenzene. For the chemical RW-41 (row 7), the company used 129.894 lbs of formaldehyde, 4.3298 lbs 2-butoxyalcohol, 4.3298 lbs dioxane and 2.1694 lbs acrylaldehyde, etc.

Now let’s look at the total accountpage matrix for machine 7:

[image: image297.wmf]=

AP7

0

0

0

3949.42

4952.7

1947.83

0

0

53.8

[image: image298.wmf]=

DIAGAP7

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

3949.42

0

0

0

0

0

0

0

0

0

4952.7

0

0

0

0

0

0

0

0

0

1947.83

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

53.8

[image: image299.wmf]AP8

.

DIAGAP7

DB

,

9

15

[image: image300.wmf]=

AP8

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.39494

0

0

0

0

0

0

0

0

3.94942

0

0

0

0

2.152

0

0

0

0

495.27

0

0

0

0

0

0

0

0

0

11.68698

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

4.035

INTERPRETATION: In the chemical FC-37, there was used .39494 lbs

2-ethoxyethylene and 3.94942 lbs ethylene glycol. For the chemical ZON, there is 2.152 lbs ethylene glycol and 4.035 lbs acetone, etc.

There will be 9 of these accountpage matrices, one for the total inventory, and 8 more, 1 for each of the eight machines.

Suppose we are Title V or synthetic minor and again the EPA or the state is mainly interested in machines 5, 6 and 7 because the bulk of the organic volatiles are used in these machines and expelled in their stacks which the EPA monitors. Then we have:

7

([INV][DB] =

5

0 0 362.5 638 0 476.7 10824.5 5500 826

0 0 362.5 4023 0 325.6 10824.5 5500 0
 [DB]9,15

0 0 0 3949.42 4952.7 1947.83 0 0 53.8

Or we can transpose and hollow dot the three of them separately to obtain three 9x15 sub-matrices that account for just these three particular stacks. Note also that we can take the three accountpage solutions and add each of the separate matrices together to get a single accountpage matrix that is the total accounting of the chemical usage of machines 5, 6 and 7.

[image: image301.wmf]R6

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

[image: image302.wmf]R7

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

[image: image303.wmf]R8

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

[image: image304.wmf]AP5A

.

.

T

INV

,

9

9

R6

NINE1

[image: image305.wmf]DIAGAP5A

diag

(

)

AP5A

(6[INV]T9,9 [R6]9,9[1]9,1)o [DB]9,15
[image: image306.wmf]AP6A

.

.

T

INV

,

9

9

R7

NINE1

[image: image307.wmf]DIAGAP6A

diag

(

)

AP6A

(7[INV]T9,9 [R7]9,9[1]9,1)o [DB]9,15
[image: image308.wmf]AP7A

.

.

T

INV

,

9

9

R8

NINE1

[image: image309.wmf]DIAGAP7A

diag

(

)

AP7A

(8[INV]T9,9 [R8]9,9[1]9,1)o [DB]9,15
[image: image310.wmf]AP5

.

DIAGAP5A

DB

,

9

15

[image: image311.wmf]AP6

.

DIAGAP6A

DB

,

9

15

[image: image312.wmf]AP7

.

DIAGAP7A

DB

,

9

15

[image: image313.wmf]AP567

AP5

AP6

AP7

[image: image314.wmf]=

AP5

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

7.25

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.0638

0

0

0

0

0

0

0

0

0.638

0

0

0

0

33.048

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2.8602

64.947

27.5

0

0

0

0

0

0

0

2.1649

0

0

0

0

0

0

0

0

2.1649

0

0

0

0

0

0

0

0

1.08245

0

0

0

0

0

0

0

0

0

110

0

0

0

0

0

0

0

0

0

61.965

Or, we can transpose INV9,9 for 5, 6 and 7, sum the rows, diagonalize the column and multiply by DB9,15. i.e. (Note: R567 = R678 above).

(567[INV]T9,9 [R567]9,9[1]9,1)o [DB]9,15

 (MathCad will not take matrices in parenthesis, so we must do the

problem in steps).

Because this may look complicated, let’s look at the last problem step by step.

Let’s look at this more generally. In this example, I included the total inventory as row one in the inventory matrix. Then I broke this down to chemical usage per machine as an individual row each. Including the whole matrix except row 1, summing the columns equals the value of row 1. Therefore, we don’t even need row 1 for our computations. I just put it in for illustration and convenience. If we don’t include the total inventory in the inventory matrix, just the machine breakdowns, we get:

1[AP]9,15 = ([AP]9,15 = 2([AP]9,15 +3([AP]9,15+. . . 9([AP]9,15
Or if only the fractional parts are included but not the total inventory:

 9

T[AP]9,15 = ([AP]9,15

 1

Let’s do a few computations by hand and see if they check.

We had 5590 lbs AP total, of which 2% was alkylphenolic ether. So 5590 x .020 = 111.8 lbs APE. In machine 7, we used 3949.42 lbs FC-37 of which .01% is 2-ethoxyethylene.

3949.42 x .0001 = .3949 lbs 2-EE. Also, .1% of FC-37 is composed of ethylene glycol, so we have 3949.42 x .001 = 3.94942 lbs EG. To check on the total inventory, let’s do the formaldehyde total, since there is more in this column than any other. Of 2750 lbs NW-3A, .6% is formaldehyde: 2750 x .006 = 16.5 lbs. Of 21,649 lbs RW-41, .6% is also formaldehyde, so we have 21,649 x .006 = 129.894bs formaldehyde. The chemical mix called TGC contains .5% formaldehyde, so we have 11,000 x .005 = 55 lbs formaldehyde. The total formaldehyde is then 16.5+129.849+55 = 201.394 lbs formaldehyde used in 1995, which matches the matrix calculation.

THE ITEMPAGE MATRIX

c[DB]9,15 o [INV]T9,9

By all accounts, the solution to the itempage matrix is impossible, for we multiply the inventory matrix by the database matrix, multiplying from right to left, rather than left to right. (See proof in the theory section at the beginning of this paper.) What I’m doing is taking the individual chemical (item) and hollow dotting it into the transposed inventory matrix, receiving a sub-matrix that documents only that chemicals distribution through the inventory It’s main power is realized when we hollow dot multiply by one column in the database at a time. The lowercase c to the upper left of c[DB] stands for the number of the column we are multiplying by. There will be c = j = 15 itempage matrices if we wish to compute them all. Again, I will work with formaldehyde, since there are 3 entries in it’s column. In this case, c = 10 since formaldehyde is listed in the 10th column. We remove this column from [DB]9,15 and hollow dot multiply into the [INV]T9,9 matrix. i.e. Note also when we are done, that the solution is defined in four variables, rather than three. That is, in machine 5, the chemical RW-41 contains a total of 129.894 lbs of formaldehyde. We pick up an extra descriptive variable using this reverse multiplication.

[image: image315.wmf]0

0

0

0

0

.006

.006

.005

0

 o[image: image316.wmf]5590

55366

725

8610

49547

2750

21649

11000

880

5590

41605

0

0

0

0

0

0

0

0

12863

0

0

0

0

0

0

0

0

898.1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

362.5

638

0

476.7

10824.5

5500

826.2

0

0

362.5

4023

0

325.6

10824.5

5500

0

0

0

0

3949.42

4952.7

1947.83

0

0

53.8

0

0

0

0

44574.3

0

0

0

0

=

But a computer cannot multiply across, so we must diagonalize the column matrix first.

 and 10[DB]9,15 =

10[DB]9,15 = FORM

=

 Tot #1 #2 #3 #4 #5 #6 #7 #8
[image: image317.wmf]=

IP

10

0

0

0

0

0

16.5

129.894

55

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2.8602

64.947

27.5

0

0

0

0

0

0

1.9536

64.947

27.5

0

0

0

0

0

0

11.68698

0

0

0

0

0

0

0

0

0

0

0

0

INTERPRETATION: Looking at the Itempage matrix for formaldehyde, we can instantly see that three chemicals contain formaldehyde and their use is distributed among machines 5, 6 and 7 in the poundage’s listed. I really wish I could place the chemical names by the matrix, but MathCad won’t let me and I do not wish to type out the matrix again, so we just have to remember that in order, the chemicals are:

AP

CSS

DGP

FC-37

KFR-18

NW-3A

RW-41

TGC

ZON

Let me theorize here for a moment. I don’t really think that putting the c[DB]

in front of the [INV]T matrix is mathematically correct. I think it’s fundamentally simpler than this. I mean it works, but if you transpose the [DB] matrix and multiply by [INV]T there is no solution (the indices do not match), but according to the proof of the half-multiplier, if you can hollow dot multiply the matrices and then sum the columns, you can also transpose and multiply the regular way and get the same answer. i.e. [DB]T[INV]T=[SOL]T ; but [INV]T[DB]T([SOL]T .

What this seems to suggest is that the hollow dot operation is transpose commutative. That is [SOL]T = [IP].

Let’s see if this makes sense. Let’s transpose the [DB] matrix, sum the new rows, and o multiply across the [INV]T matrix and see if we get the same answer.

ONE15 = (FIFTEEN1)T

Here I sum the rows of the database matrix

Here I diagonalize the above solution

This is the total itempage solution

INTERPRETATION: The chemical CSS (second row) has a total of 16,056.14 lbs of all organic’s, of which 12,065.45 lbs were used in machine 1, 3730.27 lbs were used in machine 2 and 260.449 lbs were used in machine 3. In the first row, the chemical AP contains a total of 447.2 lbs organic’s used in machine 1 only. Since this is a simple computation, let’s check and see if it is right. The chemical AP contains two organic’s, alkylphenolic

ether (2%) and diphenyl ether (6%). We used a total of 5590 lbs in 1995, so we have

5590x.02 + 5590x.06 = 111.8 + 335.4 = 447.2 lbs APE and DPE combined.

If we compute all the itempage matrices and add these sub-matrices together, we will come up with the above matrix. The itempage matrix does not keep track of the individual components, we must itempage for each separate chemical to find this out. It just gives us the total of volatiles used. Note also, that the post-multiplier matrix operates on the pre-multiplier matrix, giving a solution of chemicals per machine rather than chemical fraction per bulk chemical.

We can also take Log[IPTOT]9,9 - Log[INV]9,9, then take the anti-log which will give us the total % volatiles per chemical per machine.

We can also multiply the [APTOT]jk matrix by [1]1,j to sum the columns. i.e.

[1]1,j = [1]1,9 ; [1]1,9 [APTOT]9,15 = [111.8 335.4 6642 2229.3 5537 1661 .863 43.83 4955 84.5 4.33 4.33 2.16 220 66]

= [SOL]1,15.

Which, looking at the total inventory (row 1) in the [SOL]9,15 matrix are equal. Multiplying [SOL]1,15 by [1]15,1 we get [SOL]1,15[1]15,1 = [LBS]1,1 (a single number) which gives the total poundage for volatile organic’s and/or criteria pollutants in the inventory. i.e.

[SOL]1,15[1]15,1 = 21,897.513 lbs total in the inventory.

MULTIPLE CHEMICAL USAGE INVENTORY

Here I’m going to make simple computations comparing inventories over two years, comparing chemical usage in 1995 and 1996. This could also be for day after day comparisons, weekly, monthly, semi-annually, etc.

CHEMICALS USED (IN POUNDS)(

 AP
 CSS DGP FC-37 KFR-18 NW-3A RW-41 TGC ZON
[image: image318.wmf]INV1995

5590

5590

0

0

0

0

0

0

0

55371

41605

12863

898.1

0

0

0

0

0

725

0

0

0

0

362.5

362.5

0

0

8630

0

0

0

0

638

4023

3949.42

0

49547

0

0

0

0

0

0

4952.7

44574.3

2750

0

0

0

0

476.7

325.6

1947.83

0

21649

0

0

0

0

10824.5

10824.5

0

0

11000

0

0

0

0

5500

5500

0

0

880

0

0

0

0

826.2

0

53.8

0

[image: image319.wmf]INV1996

5600

5600

0

0

0

0

0

0

0

56481

42439

13093.3

916.1

0

0

0

0

0

800

0

0

0

0

400

400

0

0

8530

0

0

0

0

630.6

3976.4

3903.66

0

50547

0

0

0

0

0

0

5054.7

44592.3

2780

0

0

0

0

481.9

329.2

1969.2

0

22750

0

0

0

0

11375

11375

0

0

12000

0

0

0

0

6000

6000

0

0

980

0

0

0

0

919.9

0

60.14

0

MathCad cannot create a matrix larger than 100 elements at a time. To create
larger matrices, we must augment them (join two matrices side by side) or stack them,

(join two matrices on top of each other). Examples are as follows.
[image: image320.wmf]=

stack

(

)

,

INV1995

INV1996

5590

5590

0

0

0

0

0

0

0

5600

5600

0

0

0

0

0

0

0

55371

41605

12863

898.1

0

0

0

0

0

56481

42439

13093.3

916.1

0

0

0

0

0

725

0

0

0

0

362.5

362.5

0

0

800

0

0

0

0

400

400

0

0

8630

0

0

0

0

638

4023

3949.42

0

8530

0

0

0

0

630.6

3976.4

3903.66

0

49547

0

0

0

0

0

0

4952.7

44574.3

50547

0

0

0

0

0

0

5054.7

44592.3

2750

0

0

0

0

476.7

325.6

1947.83

0

2780

0

0

0

0

481.9

329.2

1969.2

0

21649

0

0

0

0

10824.5

10824.5

0

0

22750

0

0

0

0

11375

11375

0

0

11000

0

0

0

0

5500

5500

0

0

12000

0

0

0

0

6000

6000

0

0

880

0

0

0

0

826.2

0

53.8

0

980

0

0

0

0

919.9

0

60.14

0

[image: image321.wmf]DB1

.02

0

0

0

0

0

0

0

0

.06

0

0

0

0

0

0

0

0

0

.12

0

0

0

0

0

0

0

0

.04

.02

0

0

0

0

0

0

0

.10

0

0

0

0

0

0

0

0

.03

0

0

0

0

0

0

0

0

0

0

.0001

0

0

0

0

0

0

0

0

.001

0

0

0

0

.04

0

0

0

0

.10

0

0

0

0

[image: image322.wmf]DB2

0

0

0

0

0

.006

.0006

.005

0

0

0

0

0

0

0

.0002

0

0

0

0

0

0

0

0

.0002

0

0

0

0

0

0

0

0

.0001

0

0

0

0

0

0

0

0

0

.02

0

0

0

0

0

0

0

0

0

.075

 APE DPE NAPTH ISOP 2-EH oDCB 2EtOH EtGly AMM FORM 2-BtOH DIOX ACRYL DEG ACET
[image: image323.wmf]=

augment

(

)

,

DB1

DB2

0.02

0

0

0

0

0

0

0

0

0.06

0

0

0

0

0

0

0

0

0

0.12

0

0

0

0

0

0

0

0

0.04

0.02

0

0

0

0

0

0

0

0.1

0

0

0

0

0

0

0

0

0.03

0

0

0

0

0

0

0

0

0

0

0.0001

0

0

0

0

0

0

0

0

0.001

0

0

0

0

0.04

0

0

0

0

0.1

0

0

0

0

0

0

0

0

0

0.006

0.0006

0.005

0

0

0

0

0

0

0

0.0002

0

0

0

0

0

0

0

0

0.0002

0

0

0

0

0

0

0

0

0.0001

0

0

0

0

0

0

0

0

0

0.02

0

0

0

0

0

0

0

0

0

0.075

[image: image324.wmf]INV

stack

(

)

,

INV1995

INV1996

[image: image325.wmf]DB

augment

(

)

,

DB1

DB2

[image: image326.wmf]SOL

.

INV

DB

 APE DPE NAPTH
 ISOP 2-EtHEX o DCB 2-EtOH EG AMMON
FORM 2-BtOH DIOX ACRYL DEG ACET
[image: image327.wmf]=

.

INV

DB

111.8

111.8

0

0

0

0

0

0

0

112

112

0

0

0

0

0

0

0

335.4

335.4

0

0

0

0

0

0

0

336

336

0

0

0

0

0

0

0

6644.52

4992.6

1543.56

107.772

0

0

0

0

0

6777.72

5092.68

1571.196

109.932

0

0

0

0

0

2229.34

1664.2

514.52

35.924

0

7.25

7.25

0

0

2275.24

1697.56

523.732

36.644

0

8

8

0

0

5537.1

4160.5

1286.3

89.81

0

0

0

0

0

5648.1

4243.9

1309.33

91.61

0

0

0

0

0

1661.13

1248.15

385.89

26.943

0

0

0

0

0

1694.43

1273.17

392.799

27.483

0

0

0

0

0

0.863

0

0

0

0

0.064

0.402

0.395

0

0.853

0

0

0

0

0.063

0.398

0.39

0

43.83

0

0

0

0

33.686

4.023

6.101

0

47.73

0

0

0

0

37.427

3.976

6.309

0

4954.7

0

0

0

0

0

0

495.27

4457.43

5054.7

0

0

0

0

0

0

505.47

4459.23

84.489

0

0

0

0

36.855

35.948

11.687

0

90.33

0

0

0

0

39.716

38.8

11.815

0

4.33

0

0

0

0

2.165

2.165

0

0

4.55

0

0

0

0

2.275

2.275

0

0

4.33

0

0

0

0

2.165

2.165

0

0

4.55

0

0

0

0

2.275

2.275

0

0

2.165

0

0

0

0

1.082

1.082

0

0

2.275

0

0

0

0

1.138

1.138

0

0

220

0

0

0

0

110

110

0

0

240

0

0

0

0

120

120

0

0

66

0

0

0

0

61.965

0

4.035

0

73.5

0

0

0

0

68.992

0

4.51

0

INTERPRETATION: In 1995, there was a total of 111.8 lbs alkylphenolic ether used, 111.8 lbs in machine #1. There was a total of 6644.52 lbs naphthalene used, 4992.6 lbs in machine #1, 1543.56 lbs in machine #2 and 107.772 lbs in machine #3. In 1996, there was 6777.72 lbs used, 5092.68 lbs in machine #1, 1571.196 lbs in machine #2 and 109.932 lbs used in machine #3. In 1996, a total of 4.55 lbs dioxane was used, 2.275 lbs in machine #5 and 2.275 lbs in machine #6 etc.

Now, to compare how much more or less of chemicals was used in 1996 than 1995, we proceed as follows

INTERPRETATION: We used .20 lbs more alkylphenolic ether in 1996 than in 1995, 133.2 lbs more naphthalene in 1996 than 1995 and -.01 lbs less of 2-ethylhexane in 1996 than in 1995.

Since we are using a stacked matrix for the above calculation, we need to use the statistical database DB9.

We can also use the un-stacked Inventory matrices to calculate the differences in chemical usage from 1995 to 1996. The stacked matrix is used in the HP-48G only, but we can use the un-stacked matrices as follows: (this method gives the same answer as above, but it is computed differently).

Therefore:

Now we will look at some Accountpage Matrices. We can only extract a column at a time, not a row, so we have to transpose the Inventory Matrix to obtain whatever row we wish to account for. For this example, we shall extract the total inventory for 1995 and show its account page, and we shall extract the column for Machine 7 and show its account page. We proceed as follows:

To extract column 0:

Press Matrix palette, type in INV1995, CLICK M TRANSPOSE,

CLICK M <>, TYPE IN 0, PRESS =.

[image: image328.wmf]=

<

>

T

INV1995

0

5590

55371

725

8630

49547

2750

21649

11000

880

[image: image329.wmf]=

diag

(

)

V

5590

0

0

0

0

0

0

0

0

0

55371

0

0

0

0

0

0

0

0

0

725

0

0

0

0

0

0

0

0

0

8630

0

0

0

0

0

0

0

0

0

49547

0

0

0

0

0

0

0

0

0

2750

0

0

0

0

0

0

0

0

0

21649

0

0

0

0

0

0

0

0

0

11000

0

0

0

0

0

0

0

0

0

880

[image: image330.wmf]AP1

.

diag

(

)

V

DB

 APE DPE NAPTH ISOP 2-ETHEX o-DCB 2-EtOH EtGly AMM FORMAL 2- BtOH DIOX ACRYL DEG ACET
[image: image331.wmf]=

AP1

111.8

0

0

0

0

0

0

0

0

335.4

0

0

0

0

0

0

0

0

0

6644.52

0

0

0

0

0

0

0

0

2214.84

14.5

0

0

0

0

0

0

0

5537.1

0

0

0

0

0

0

0

0

1661.13

0

0

0

0

0

0

0

0

0

0

0.863

0

0

0

0

0

0

0

0

8.63

0

0

0

0

35.2

0

0

0

0

4954.7

0

0

0

0

0

0

0

0

0

16.5

12.989

55

0

0

0

0

0

0

0

4.33

0

0

0

0

0

0

0

0

4.33

0

0

0

0

0

0

0

0

2.165

0

0

0

0

0

0

0

0

0

220

0

0

0

0

0

0

0

0

0

66

ANALYSIS:5500 LBS OF BURCO AP CONTAINS 111.8 LBS ALKYLPHENOLIC ETHER AND 335.4 LBS DIPHENYL ETHER

55,371 LBS SUPERSOL CSS CONTAINS 6644.52 LBS NAPTHALENE, 2214.84 LBS ISOPROPANOL, 5537.1 LBS

2-ETHYLHEXANE, AND 1661.13 LBS O-DICHLOROBENZENE

725 LBS DGP CONTAINS 14.5 LBS ISOPROPANOL

8630 LBS FC-37 CONTAINS .863 LBS 2-ETHOXYETHOXY ALCOHOL AND 8.63 LBS ETHYLENE GLYCOL

49,547 LBS KFR-18 CONTAINS 4954.7 LBS AMMONIA

2750 LBS NW-3A CONTAINS 16.5 LBS FORMALDEHYDE

21,649 LBS RW-41 CONTAINS 12.989 LBS FORMALDEHYDE, 4.33 LBS 2-BUTYL ALCOHOL, 4.33 LBS DIOXANE,

AND 2.165 LBS ACRYLALDEHYDE

11,000 LBS TGC CONTAINS 220 LBS DIETHYLENE GLYCOL

880 LBS ZONYL Y CONTAINS 66 LBS ACETONE

Now lets look at the account page Matrix for Machine 6 (it uses the most chemicals):
[image: image332.wmf]W

<

>

T

INV1995

6

[image: image333.wmf]=

diag

(

)

W

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

362.5

0

0

0

0

0

0

0

0

0

4023

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

325.6

0

0

0

0

0

0

0

0

0

10824.5

0

0

0

0

0

0

0

0

0

5500

0

0

0

0

0

0

0

0

0

0

[image: image334.wmf]=

<

>

T

INV1995

6

0

0

362.5

4023

0

325.6

10824.5

5500

0

[image: image335.wmf]AP6

.

diag

(

)

W

DB

 APE DPE NAP ISOP 2-EH oDCB 2EE EG AMM FORM 2BA DIOX ACRYL DEG ACET

[image: image336.wmf]=

AP6

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

7.25

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.402

0

0

0

0

0

0

0

0

4.023

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1.954

6.495

27.5

0

0

0

0

0

0

0

2.165

0

0

0

0

0

0

0

0

2.165

0

0

0

0

0

0

0

0

1.082

0

0

0

0

0

0

0

0

0

110

0

0

0

0

0

0

0

0

0

0

ANALYSIS: MACHINE 6 USED 362.5 LBS DGP CONTAINING 7.25 LBS ISOPROPANOL

4023 LBS FC-37 CONTAINING .402 LBS 2-ETHOXYETHOXY ALCOHOL

325.6 LBS NW-3A 1.954 LBS FORMALDEHYDE

10,824.5 LBS RW-41 CONTAINING 6.495 LBS FORMALDEHYDE, 2.165 LBS 2-BUTYL ALCOHOL,

2.165 LBS DIOXANE AND 1.082 LBS ACRYLALDEHYDE

5500 LBS TGC CONTAINING 27.5 LBS FORMALDEHYDE AND 110 LBS DIETHYLENE GLYCOL

AND FINALLY, FOR THIS SET OF EXAMPLES, WE WILL CALCULATE THE ITEMPAGE MATRIX FOR FORMALDEHYDE AND ISOPROPANOL.

FIRST WE MUST TRANSPOSE THE 1995 INVENTORY MATRIX, THEN FROM THE FORMALDEHYDE COLUMN ON THE DATABASE MATRIX WE MUST REMOVE THE COLUMNS REPRESENTING FORMALDEHYDE AND ISOPROPANOL. i.e.:

 [image: image337.wmf]FORM

<

>

(

)

DB

9

[image: image338.wmf]IP9

.

diag

(

)

FORM

T

INV1995

[image: image339.wmf]=

T

INV1995

5590

55371

725

8630

49547

2750

21649

11000

880

5590

41605

0

0

0

0

0

0

0

0

12863

0

0

0

0

0

0

0

0

898.1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

362.5

638

0

476.7

10824.5

5500

826.2

0

0

362.5

4023

0

325.6

10824.5

5500

0

0

0

0

3949.42

4952.7

1947.83

0

0

53.8

0

0

0

0

44574.3

0

0

0

0

 [image: image340.wmf]MACHINES

TOTAL #1 #2 #3#4#5 #6 #7 #8

[image: image341.wmf]=

IP9

0

0

0

0

0

16.5

12.989

55

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2.86

6.495

27.5

0

0

0

0

0

0

1.954

6.495

27.5

0

0

0

0

0

0

11.687

0

0

0

0

0

0

0

0

0

0

0

0

ANALYSIS: NW-3A CONTAINED 16.5 TOTAL LBS OF FORMALDEHYDE, OF WHICH 2.86 LBS WERE USED IN

MACHINE 5, 1.954 LBS WERE USED IN MACHINE 6 AND 11.687 LBS WERE USED IN MACHINE 7.

RW-41 CONTAINED A TOTAL OF 12.989 LBS FORMALDEHYDE, 6.4955 LBS WERE USED IN MACHINE 5 AND 6.495 LBS WERE USED IN MACHINE 6.

TGC CONTAINED 55 LBS FORMALDEHYDE, 27.5 LBS WERE USED IN MACHINE 5 AND 27.5 LBS WERE USED IN MACHINE 6.

TO CALCULATE FORMALDEHYDE USAGE FOR BOTH 1995 AND 1996, WE PROCEED AS FOLLOWS:

[image: image342.wmf]IPFORM9596

.

diag

(

)

FORM

T

INV

1995

 1996

 tot95 #1 #2 #3 #4 #5 #6 #7 #8 Tot96 #1#2 #3#4 #5 #6 #7 #8

[image: image343.wmf]=

IPFORM9596

0

0

0

0

0

16.5

12.989

55

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2.86

6.495

27.5

0

0

0

0

0

0

1.954

6.495

27.5

0

0

0

0

0

0

11.687

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

16.68

13.65

60

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2.891

6.825

30

0

0

0

0

0

0

1.975

6.825

30

0

0

0

0

0

0

11.815

0

0

0

0

0

0

0

0

0

0

0

0

TO CALCULATE THE ITEMPAGE MATRIX FOR ISOPROPANOL:

[image: image344.wmf]ISOP

<

>

DB

3

[image: image345.wmf]IP3

.

diag

(

)

ISOP

T

INV

[image: image346.wmf]TOTAL95

 #1 #2 #3 #4 #5 #6 #7 #8 TOT96 #1 #2 #3 #4 #5#6 #7 #8

[image: image347.wmf]=

IP3

0

2214.84

14.5

0

0

0

0

0

0

0

1664.2

0

0

0

0

0

0

0

0

514.52

0

0

0

0

0

0

0

0

35.924

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

7.25

0

0

0

0

0

0

0

0

7.25

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2259.24

16

0

0

0

0

0

0

0

1697.56

0

0

0

0

0

0

0

0

523.732

0

0

0

0

0

0

0

0

36.644

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

8

0

0

0

0

0

0

0

0

8

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

ANALYSIS: FOR 1996, CSS CONTAINED A TOTAL OF 2259.24 LBS ISOPROPANOL, 1697.56 LBS USED IN

MACHINE 1, 523.732 LBS USED IN MACHINE 2 AND 36.644 LBS USED IN MACHINE 3.

DGP CONTAINED 16 LBS ISOPROPANOL, 8 LBS USED IN MACHINE 5 AND USED 8 LBS IN MACHINE6.

Normally, here is where I would do a statistical analysis on the chemical usage between 1995 and 1996, but I am told on the inner planes not to give everything away, so I think I’ll forego that part of my analysis for the time being and get on with other aspects of this inventory.

LABELING THE MATRICES

[image: image348.wmf]Lets use Mathcad to manipulate the labels inside the CUI Matrix PG. 90

INVENTORY

0

AP

CSS

DGP

FC

37

KFR

18

NW

3

A

RW

41

TGC

ZON

(

)

AP

AP

The spreadsheet Matrix looks like this, but we have a problem, if we multiply in this form

the labels will attach to the values, so we must leave the top row except position 1,1 as

zeros and position 1,1 = 1

INV1995

0

0

0

0

0

0

0

0

0

0

AP

5590

5590

0

0

0

0

0

0

0

CSS

55371

41605

12863

898.1

0

0

0

0

0

DGP

725

0

0

0

0

362.5

362.5

0

0

FC

37

8630

0

0

0

0

638

4023

3949.42

0

KFR

18

49547

0

0

0

0

0

0

4952.7

44574.3

NW

3A

2750

0

0

0

0

476.7

325.6

1947.83

0

RW

41

21649

0

0

0

0

10824.5

10824.5

0

0

TGC

11000

0

0

0

0

5500

5500

0

0

ZON

880

0

0

0

0

826.2

0

53.8

0

[image: image349.wmf]The inventory matrix (spreadsheet matrix) now looks like this:

SPRDSHT1995

1

0

0

0

0

0

0

0

0

0

0

5590

5590

0

0

0

0

0

0

0

0

55371

41605

12683

898.1

0

0

0

0

0

0

725

0

0

0

0

362.5

362.5

0

0

0

8630

0

0

0

0

638

4023

3949.42

0

0

49547

0

0

0

0

0

0

49952.7

44572.3

0

2750

0

0

0

0

476.7

325.6

1947.83

0

0

21649

0

0

0

0

10824.5

108244.5

0

0

0

11000

0

0

0

0

5500

5500

0

0

0

880

0

0

0

0

826.2

0

53.8

0

Now we must create the database matrix, but because it is too big we must make two separate

matrices and augment them into a bigger matrix.

[image: image350.wmf]I

0

0

0

0

0

0

0

0

0

.02

0

0

0

0

0

0

0

0

.06

0

0

0

0

0

0

0

0

0

.12

0

0

0

0

0

0

0

0

.04

.02

0

0

0

0

0

0

0

.10

0

0

0

0

0

0

0

0

.03

0

0

0

0

0

0

0

0

0

0

.0001

0

0

0

0

0

0

0

0

.001

0

0

0

0

.04

0

0

0

0

.01

0

0

0

0

J

0

0

0

0

0

.006

.001

.005

0

0

0

0

0

0

0

.0002

0

0

0

0

0

0

0

0

.0002

0

0

0

0

0

0

0

0

.0001

0

0

0

0

0

0

0

0

0

.02

0

0

0

0

0

0

0

0

0

.075

DB1

augment

I

J

,

(

)

DB1

0

0

0

0

0

0

0

0

0

0.02

0

0

0

0

0

0

0

0

0.06

0

0

0

0

0

0

0

0

0

0.12

0

0

0

0

0

0

0

0

0.04

0.02

0

0

0

0

0

0

0

0.1

0

0

0

0

0

0

0

0

0.03

0

0

0

0

0

0

0

0

0

0

0.0001

0

0

0

0

0

0

0

0

0.001

0

0

0

0

0.04

0

0

0

0

0.01

0

0

0

0

0

0

0

0

0

0.006

0.001

0.005

0

0

0

0

0

0

0

0.0002

0

0

0

0

0

0

0

0

0.0002

0

0

0

0

0

0

0

0

0.0001

0

0

0

0

0

0

0

0

0

0.02

0

0

0

0

0

0

0

0

0

0.075

=

Now we will label the individual chemicals that are in the various mixtures by using the

stack function over the database matrix:

CHEMICALS

0

APE

DPE

NAP

ISOP

2

EH

oDCB

2

EE

EG

AMM

FORM

2

BA

DIOX

ACRYL

DEGG

ACET

(

)

APE

APE

DB

stack

CHEMICALS

DB1

,

(

)

CHEMICALS

CHEMICALS

[image: image351.wmf]DB

0

0

0

0

0

0

0

0

0

0

APE

2.

10

-2

.

0

0

0

0

0

0

0

0

DPE

6.

10

-2

.

0

0

0

0

0

0

0

0

NAP

0

.12

0

0

0

0

0

0

0

ISOP

0

4.

10

-2

.

2.

10

-2

.

0

0

0

0

0

0

2

EH

.

0

.10

0

0

0

0

0

0

0

oDCB

0

3.

10

-2

.

0

0

0

0

0

0

0

2

EE

.

0

0

0

1.

10

-4

.

0

0

0

0

0

EG

0

0

0

1.

10

-3

.

0

0

0

0

4.

10

-2

.

AMM

0

0

0

0

1.

10

-2

.

0

0

0

0

FORM

0

0

0

0

0

6.

10

-3

.

1.

10

-3

.

5.

10

-3

.

0

2

BA

.

0

0

0

0

0

0

2.

10

-4

.

0

0

DIOX

0

0

0

0

0

0

2.

10

-4

.

0

0

ACRYL

0

0

0

0

0

0

1.

10

-4

.

0

0

DEGG

0

0

0

0

0

0

0

2.

10

-2

.

0

ACET

0

0

0

0

0

0

0

0

7.5

10

-2

.

[image: image352.wmf]Shrinking this matrix down so we can see it we have:

0

0

0

0

0

0

0

0

0

0

APE

0.02

0

0

0

0

0

0

0

0

DPE

0.06

0

0

0

0

0

0

0

0

NAP

0

0.12

0

0

0

0

0

0

0

ISOP

0

0.04

0.02

0

0

0

0

0

0

2EH

0

0.1

0

0

0

0

0

0

0

oDCB

0

0.03

0

0

0

0

0

0

0

2EE

0

0

0

0

0

0

0

0

0

EG

0

0

0

0.001

0

0

0

0

0.04

AMM

0

0

0

0

0.01

0

0

0

0

FORM

0

0

0

0

0

0.006

0.001

0.005

0

2BA

0

0

0

0

0

0

.0002

0

0

DIOX

0

0

0

0

0

0

.0002

0

0

ACRYL

0

0

0

0

0

0

.0001

0

0

DEGG

0

0

0

0

0

0

0

0.02

0

ACET

0

0

0

0

0

0

0

0

0.075

CUI

SPRDSHT1995

DB

.

DB

DB

[image: image353.wmf]SPRDSHT1995

DB

.

0

0

0

0

0

0

0

0

0

0

APE

111.80

111.80

0

0

0

0

0

0

0

DPE

335.40

335.40

0

0

0

0

0

0

0

NAP

6644.52

4992.60

1521.96

107.772

0

0

0

0

0

ISOP

2229.34

1664.20

507.32

35.924

0

7.250

7.250

0

0

2

EH

.

5537.10

4160.50

1268.30

89.810

0

0

0

0

0

oDCB

1661.13

1248.15

380.49

26.943

0

0

0

0

0

2

EE

.

.8630

0

0

0

0

6.38

10

-2

.

.4023

.394942

0

EG

43.830

0

0

0

0

33.686

4.023

6.10142

0

AMM

495.47

0

0

0

0

0

0

499.527

445.723

FORM

93.149

0

0

0

0

41.1847

137.6981

11.68698

0

2

BA

.

4.3298

0

0

0

0

2.16490

21.64890

0

0

DIOX

4.3298

0

0

0

0

2.16490

21.64890

0

0

ACRYL

2.1649

0

0

0

0

1.08245

10.82445

0

0

DEGG

220.00

0

0

0

0

110.00

110.00

0

0

ACET

66.000

0

0

0

0

61.9650

0

4.0350

0

[image: image354.wmf]CUI

0

0

0

0

0

0

0

0

0

0

APE

111.80

111.80

0

0

0

0

0

0

0

DPE

335.40

335.40

0

0

0

0

0

0

0

NAP

6644.52

4992.60

1521.96

107.772

0

0

0

0

0

ISOP

2229.34

1664.20

507.32

35.924

0

7.250

7.250

0

0

2

EH

.

5537.10

4160.50

1268.30

89.810

0

0

0

0

0

oDCB

1661.13

1248.15

380.49

26.943

0

0

0

0

0

2

EE

.

.8630

0

0

0

0

6.38

10

-2

.

.4023

.394942

0

EG

43.830

0

0

0

0

33.686

4.023

6.10142

0

AMM

495.47

0

0

0

0

0

0

499.527

445.723

FORM

93.149

0

0

0

0

41.1847

137.6981

11.68698

0

2

BA

.

4.3298

0

0

0

0

2.16490

21.64890

0

0

DIOX

4.3298

0

0

0

0

2.16490

21.64890

0

0

ACRYL

2.1649

0

0

0

0

1.08245

10.82445

0

0

DEGG

220.00

0

0

0

0

110.00

110.00

0

0

ACET

66.000

0

0

0

0

61.9650

0

4.0350

0

[image: image355.wmf]Now we want to label the values, so we must make the label matrix by augmenting:

A

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

B

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

LABEL1

augment

A

B

,

(

)

[image: image356.wmf]LABEL1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

=

C

0

AP

CSS

DGP

FC37

KFR18

NW3A

RW41

TGC

ZON

AP

AP

And now we join the labels to the matrix:

LABEL

augment

C

LABEL1

,

(

)

C

C

LABEL

0

AP

CSS

DGP

FC37

KFR18

NW3A

RW41

TGC

ZON

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Finally we add the Chemical Usage Inventory Matrix to the Label Matrix to get the final

form we want.:

[image: image357.wmf]CUI

LABEL

0

AP

CSS

DGP

FC37

KFR18

NW3A

RW41

TGC

ZON

APE

111.80

111.80

0

0

0

0

0

0

0

DPE

335.40

335.40

0

0

0

0

0

0

0

NAP

6644.52

4992.60

1521.96

107.772

0

0

0

0

0

ISOP

2229.34

1664.20

507.32

35.924

0

7.250

7.250

0

0

2

EH

.

5537.10

4160.50

1268.30

89.810

0

0

0

0

0

oDCB

1661.13

1248.15

380.49

26.943

0

0

0

0

0

2

EE

.

.8630

0

0

0

0

6.38

10

-2

.

.4023

.394942

0

EG

43.830

0

0

0

0

33.686

4.023

6.10142

0

AMM

495.47

0

0

0

0

0

0

499.527

445.723

FORM

93.149

0

0

0

0

41.1847

137.6981

11.68698

0

2

BA

.

4.3298

0

0

0

0

2.16490

21.64890

0

0

DIOX

4.3298

0

0

0

0

2.16490

21.64890

0

0

ACRYL

2.1649

0

0

0

0

1.08245

10.82445

0

0

DEGG

220.00

0

0

0

0

110.00

110.00

0

0

ACET

66.000

0

0

0

0

61.9650

0

4.0350

0

Suppose we are a company who wishes to keep our inventory secret in case hackers break into our computer. Also suppose we are paranoid of any commercial encryption software out on the market (anyone who can understand the program can possibly decode our information). Lets encrypt the information ourselves. We must remember to save the key on a disk and delete all info as to the identity of the key from mathcad. (OF course, we can just keep the CUI on disk and not in the computer if we wish too) As you will see, if we wish to encrypt our data, we really should do it with our unlabled computations and add the labels in after de-encryption.

[image: image358.wmf]A

CUI

LABEL

CUI

CUI

[image: image359.wmf]A

0

AP

CSS

DGP

FC37

KFR18

NW3A

RW41

TGC

ZON

APE

111.80

111.80

0

0

0

0

0

0

0

DPE

335.40

335.40

0

0

0

0

0

0

0

NAP

6644.52

4992.60

1521.96

107.772

0

0

0

0

0

ISOP

2229.34

1664.20

507.32

35.924

0

7.250

7.250

0

0

2

EH

.

5537.10

4160.50

1268.30

89.810

0

0

0

0

0

oDCB

1661.13

1248.15

380.49

26.943

0

0

0

0

0

2

EE

.

.8630

0

0

0

0

6.38

10

-2

.

.4023

.394942

0

EG

43.830

0

0

0

0

33.686

4.023

6.10142

0

AMM

495.47

0

0

0

0

0

0

499.527

445.723

FORM

93.149

0

0

0

0

41.1847

137.6981

11.68698

0

2

BA

.

4.3298

0

0

0

0

2.16490

21.64890

0

0

DIOX

4.3298

0

0

0

0

2.16490

21.64890

0

0

ACRYL

2.1649

0

0

0

0

1.08245

10.82445

0

0

DEGG

220.00

0

0

0

0

110.00

110.00

0

0

ACET

66.000

0

0

0

0

61.9650

0

4.0350

0

First we will scramble just the rows, then we will scramble the columns. This simple CUI has 10 rows and 16 columns, we must make a 10x10 matris to interchange the rows. Note that there is only a single 1 in any row or column, you can scramble the ones as you wish.

[image: image360.wmf]CODE

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

Now premultiplying on the data matrix we get:

[image: image361.wmf]CODE

A

.

DGP

AP

RW41

KFR18

CSS

0

FC37

ZON

TGC

NW3A

0

111.80

0

0

111.80

APE

0

0

0

0

0

335.40

0

0

335.40

DPE

0

0

0

0

1521.96

6644.52

0

0

4992.60

NAP

107.772

0

0

0

507.32

2229.34

7.250

0

1664.20

ISOP

35.924

0

0

7.250

1268.30

5537.10

0

0

4160.50

2

EH

.

89.810

0

0

0

380.49

1661.13

0

0

1248.15

oDCB

26.943

0

0

0

0

.8630

.4023

0

0

2

EE

.

0

0

.394942

6.38

10

-2

.

0

43.830

4.023

0

0

EG

0

0

6.10142

33.686

0

495.47

0

0

0

AMM

0

445.723

499.527

0

0

93.149

137.6981

0

0

FORM

0

0

11.68698

41.1847

0

4.3298

21.64890

0

0

2

BA

.

0

0

0

2.16490

0

4.3298

21.64890

0

0

DIOX

0

0

0

2.16490

0

2.1649

10.82445

0

0

ACRYL

0

0

0

1.08245

0

220.00

110.00

0

0

DEGG

0

0

0

110.00

0

66.000

0

0

0

ACET

0

0

4.0350

61.9650

Now we will scramble the columns, since this is a 10x16 matrix, we need a 16x16 matrix, but Mathcad can only form single matrices of 100 elements. so we must create the matrices of less than 100 elements and stack them together.

[image: image362.wmf]CODEB1

0

0

1

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

0

0

1

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

[image: image363.wmf]CODEB2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

[image: image364.wmf]CODEB3

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

1

0

0

0

0

1

0

1

0

0

0

[image: image365.wmf]CODEB4

stack

CODEB1

CODEB2

,

(

)

[image: image366.wmf]CODEB

stack

CODEB4

CODEB3

,

(

)

This is the scrambler matrix for the column scramble

[image: image367.wmf]CODEB

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

=

[image: image368.wmf]C

CODE

A

.

CODEB

.

CODE

A

.

CODEB

.

CODE

A

.

CODEB

.

This matrix has it's rows and columns interchanged.

[image: image369.wmf]CODE

A

.

CODEB

.

0

335.40

0

0

335.40

DPE

0

0

0

0

1268.30

5537.10

0

0

4160.50

2

EH

.

89.810

0

0

0

DGP

AP

RW41

KFR18

CSS

0

FC37

ZON

TGC

NW3A

1521.96

6644.52

0

0

4992.60

NAP

107.772

0

0

0

0

111.80

0

0

111.80

APE

0

0

0

0

507.32

2229.34

7.250

0

1664.20

ISOP

35.924

0

0

7.250

380.49

1661.13

0

0

1248.15

oDCB

26.943

0

0

0

0

43.830

4.023

0

0

EG

0

0

6.10142

33.686

0

93.149

137.6981

0

0

FORM

0

0

11.68698

41.1847

0

.8630

.4023

0

0

2

EE

.

0

0

.394942

6.38

10

-2

.

0

495.47

0

0

0

AMM

0

445.723

499.527

0

0

4.3298

21.64890

0

0

2

BA

.

0

0

0

2.16490

0

66.000

0

0

0

ACET

0

0

4.0350

61.9650

0

2.1649

10.82445

0

0

ACRYL

0

0

0

1.08245

0

220.00

110.00

0

0

DEGG

0

0

0

110.00

0

4.3298

21.64890

0

0

DIOX

0

0

0

2.16490

To decode this and get our information back again we just multiply the coded matrix by the transpose of the encoding matrices i.e.:

[image: image370.wmf]CODE

T

C

.

CODEB

T

.

0

AP

CSS

DGP

FC37

KFR18

NW3A

RW41

TGC

ZON

APE

111.80

111.80

0

0

0

0

0

0

0

DPE

335.40

335.40

0

0

0

0

0

0

0

NAP

6644.52

4992.60

1521.96

107.772

0

0

0

0

0

ISOP

2229.34

1664.20

507.32

35.924

0

7.250

7.250

0

0

2

EH

.

5537.10

4160.50

1268.30

89.810

0

0

0

0

0

oDCB

1661.13

1248.15

380.49

26.943

0

0

0

0

0

2

EE

.

.8630

0

0

0

0

6.38

10

-2

.

.4023

.394942

0

EG

43.830

0

0

0

0

33.686

4.023

6.10142

0

AMM

495.47

0

0

0

0

0

0

499.527

445.723

FORM

93.149

0

0

0

0

41.1847

137.6981

11.68698

0

2

BA

.

4.3298

0

0

0

0

2.16490

21.64890

0

0

DIOX

4.3298

0

0

0

0

2.16490

21.64890

0

0

ACRYL

2.1649

0

0

0

0

1.08245

10.82445

0

0

DEGG

220.00

0

0

0

0

110.00

110.00

0

0

ACET

66.000

0

0

0

0

61.9650

0

4.0350

0

Which is the unscrambled inventory.

CALCULATION OF A WATER BILL

WATER BILL

METER READING THIS MONTH
-
METER READING LAST MONTH =
GALLONS WATER USED

[image: image371.wmf]7100

107000

126700

11200

[image: image372.wmf]6100

106500

126000

11000

[image: image373.wmf]1000

500

700

200

[image: image374.wmf]MRTM

7100

107000

126700

11200

[image: image375.wmf]MRLM

6100

106500

126000

11000

[image: image376.wmf]GWU

MRTM

MRLM

[image: image377.wmf]=

GWU

1000

500

700

200

TO COMPUTE THE CHARGE, SUPPOSE THE COST OF WATER IS 3¢ PER GALLON, THEN

[GWU]4,1 o c[1]4,1 , WHERE C = CHARGE PER GALLON.

[image: image378.wmf]FOUR1

1

1

1

1

[image: image379.wmf]cFOUR1

.

.03

FOUR1

[image: image380.wmf]CHARGEPERCUSTOMER

(

)

.

GWU

cFOUR1

[image: image381.wmf]1000

500

700

200

 o[image: image382.wmf]0.03

0.03

0.03

0.03

=[image: image383.wmf]30

15

21

6

THE HOLLOW DOT MEANS TO MULTIPLY STRAIGHT ACROSS.

[image: image384.wmf]=

CHARGEPERCUSTOMER

30

15

21

6

NOTE: THESE VALUES ARE IN DOLLARS.

OR WE CAN COMPUTE THIS BY:

[image: image385.wmf]ANTI

LOG

(

LOG

[image: image386.wmf]1000

500

700

200

[image: image387.wmf]LOG

[image: image388.wmf]0.03

0.03

0.03

0.03

)=

PROGRAM:

Here we take the log of each individual element and add them together

(THIS REPRESENTS THE SUMMED LOGS OF THE GALLONS + PRICE MATRICES)

(THIS TAKES THE ANTI-LOG OF THE ABOVE COMPUTATION.)

THE TOTAL AMOUNT OWED BY ALL CUSTOMERS TO THE UTILITY IS:

THE TOTAL OF MONTHLY BILLS PER CUSTOMER TOTALED FOR THE ENTIRE YEAR TO DATE =

LAST MONTHS BILL(JAN. + THIS MONTHS BILL(FEB) = TWO MONTHS TOTAL PER CUSTOMER

BUT SUPPOSE THE CHARGES FOR THE FIRST 500 GALLONS = 3¢/GAL AND THE CHARGE FOR THE NEXT 1000 GALLONS RISES TO 5¢/GALLON, WE HAVE (WE IGNORE ZERO SIGNS):

(CHANGE THE NEGATIVE NUMBERS TO ZERO)

[image: image389.wmf]CHRGDIFFERENTIAL

500

500

500

200

500

0

200

0

[image: image390.wmf]PRICE

.03

.03

.03

.03

.05

.05

.05

.05

[image: image391.wmf]TOTALDIFFERENTIALCHARGES

(

)

.

CHRGDIFFERENTIAL

PRICE

[image: image392.wmf]=

TOTALDIFFERENTIALCHARGES

15

15

15

6

25

0

10

0

NOW WE NEED TO ADD THE CHARGES TOGETHER.

[image: image393.wmf]TWO1

1

1

[image: image394.wmf]TOTALCHARGE

.

TOTALDIFFERENTIALCHARGES

TWO1

[image: image395.wmf]=

.

15

15

15

6

25

0

10

0

1

1

40

15

25

6

THE FIRST CUSTOMER USED $40 WORTH OF WATER,THE SECOND CUSTOMER USED $15 WORTH OF WATER, THE THIRD CUSTOMER USED $25 WORTH OF WATER AND THE FOURTH CUSTOMER ONLY USED $6 WORTH OF WATER.

OR WE CAN USE LOGARITHMS:

[image: image396.wmf]DIFFCHRGS

500

500

500

200

500

10

100

200

10

100

(
NOTE: MUST CHANGE ZERO’S TO DEFAULT 0 (10-100)

[image: image397.wmf]LOGDIFFWATERBILL

(

)

log

(

)

DIFFCHRGS

log

(

)

PRICE

[image: image398.wmf]TOTALDIFFERENTIALCHARGES

.

10

LOGDIFFWATERBILL

TWO1

[image: image399.wmf]=

TOTALDIFFERENTIALCHARGES

40

15

25

6

With MathCad, we don’t have to take the logs of the elements of the matrices, we are just multiplying the first element in matrix one by the first element in matrix two; the second element in matrix one by its corresponding element in matrix two, etc. But computers cannot do the matrix multiplication’s this way (we can with MathCad through the vectorize operation) so we have to use logarithms to get our solutions.

To find out who paid their bill, and who is behind in their payments, we proceed as follows:

We need an accounts paid matrix where each element represents the amount paid to the utility by the water user.

Owed
paid

$40
$40
 0
paid up through February

$15 -
 0 =
 $15
owes $15 from February

$25
$35
-$10
credit $10 for February

 $6
 $6
 0
paid up through February

Suppose the utility charges 1% per month penalty for the unpaid portion of the bill. We will ignore the $10 credit:

 0
.01
 0

 0
 0

 0
 MARCH’S

15 o
.01 =
.15
Then
.15 +
 $15
=
 15.15
+ NEW

 0
.01
 0

 0
-$10

-10 BILL

 0
.01
 0

 0
 0

 0

Or we could compute the taxes, say at 6%, for the charges in the same manner:

40
.06
 40
 2.40
 40
 42.40

TAX =
15 o
.06 +
 15 =
 .90
+ 15
= 15.90

25
.06
 25
 1.50
 25
 26.50

 6
.06
 6
 .36
 6
 6.36

If a business gets a tax break, we just put in the value charged in place of the .06 and proceed as above.

One more example to show how to extend the calculations even further. Suppose after the first 1500 gallons, the charge increases to 10¢/gallon. Let’s add home 5 who used 1599 gallons of water last month. The first row will always be 500 gallons unless less water is consumed. Our matrix now becomes:

1000

 500

 700

 200

1599

And the problem becomes:

[image: image400.wmf]=

500

500

500

200

500

500

500

500

500

500

1500

1500

1500

1500

1500

0

0

0

0

0

1000

500

700

200

1599

1000

500

700

200

1599

500

500

500

200

500

500

0

200

300

1099

500

1000

800

1300

99

SINCE THE MAXIMUM FOR THE SECOND COLUMN IS 1000 GALLONS, ANYTHING OVER BELONGS IN THE THIRD COLUMN, SO LET'S SEE IF THERE ARE ANY VALUES ABOVE 1000 IN THE SECOND COLUMN. (HERE WE CAN SEE IT, BUT IF THIS WERE THE WATER BILL FOR NYC OR LA THERE WOULD BE MILLIONS OF LISTINGS, TOO MANY TO LOOK FOR BY HAND). IF ANY THREE VALUES IN ANY ROW ARE ALL POSITIVE, OVER 1500 GALLONS OF WATER WERE USED. A CORRECTION MATRIX CAN BE DERIVED AS FOLLOWS: REPLACE EVERY NEGATIVE VALUE WITH ZERO.

[image: image401.wmf]500

500

500

200

500

500

0

200

0

1000

0

0

0

0

99

MATHCAD WILL LET US DELETE THE MIDDLE COLUMN, BUT IT WON'T LET US INSERT THE CORRECTED MATRIX IN IT'S PLACE. WE MUST SELECT THE 500 AT THE TOP OF THE MIDDLE COLUMN. CLICK THE MATRIX PALLET AND FOR ROWS INSERT A ZERO, AND IN COLUMNS INSERT A ONE. THEN CLICK THE DELETE BUTTON. THEN CLICK NEXT TO THE 500 IN THE FIRST COLUMN, BUT DON'T PUT IT IN A SELECTION BOX, JUST PUT THE CURSOR TO THE RIGHT OF IT AND PRESS INSERT. WE MUST RE-TYPE IN THE NEW VALUES. WE CAM EXTRACT A SINGLE COLUMN FROM A MATRIX, BUT WE CAN’T PUT ONE IN.

THE PROBLEM NOW BECOMES, AFTER SETTING UP THE COST MATRIX:

[image: image402.wmf]=

.

500

500

500

200

500

500

0

200

0

1000

0

0

0

0

99

.03

.03

.03

.03

.03

.05

.05

.05

.05

.05

.10

.10

.10

.10

.10

15

15

15

6

15

25

0

10

0

50

0

0

0

0

9.9

[image: image403.wmf]THREE1

1

1

1

AND THE TOTAL BILL IS:

[image: image404.wmf]INV

500

500

500

200

500

500

0

200

0

1000

0

0

0

0

99

[image: image405.wmf]COST

.03

.03

.03

.03

.03

.05

.05

.05

.05

.05

.10

.10

.10

.10

.10

[image: image406.wmf]=

.

(

)

.

INV

COST

THREE1

40

15

25

6

74.9

(THE VECTORIZED INV x COST MULTIPLIES THE MATRICES ONE ON ONE.)

HONEOWNER ONE'S BILL IS $40, TWO'S BILL IS $15, THREE'S BILL IS $25, FOUR'S BILL IS $6 AND FIVE'S BILL IS $74.90.

PROGRAM: ([THIS MO. READING]5,1-[LAST MO. READING]5,1)o[.03]5,1= [BILL FOR SEPARATE HOMES]5,1
COMPLEX BILL: ANTI-LOG(LOG[SEP. INV.]5,3)+LOG([COSTS]5,3))[1]3,1 = [COMPLEX BILL FOR SEPARATE HOMES]5,1
TO KEEP TRACK OF WHOLE AREA, STATE, USA OR WORLD ALL AT THE SAME TIME

I am not going to solve this in detail like I did for the problem above, I’m just going to set this and solve for a simple system.

Suppose Butner charges 2¢/first 500 gal, 5¢/next 1000gal 11¢/all use above

Suppose Cozart charges 3¢/first 500 gal, 5¢/next 1000gal 10¢/all use above

Suppose Creedmore charges 4¢/first 500 gal, 6¢/next 1000gal 12¢/all use above

After reading the meters and calculating gallons used:

[image: image407.wmf]INV

500

500

300

500

500

500

500

200

500

500

400

500

300

300

1000

0

1000

500

0

200

0

1000

1000

0

300

0

0

100

0

10000

0

0

0

0

99

2000

0

0

0

[image: image408.wmf]COST

.02

.02

.02

.02

.03

.03

.03

.03

.03

.04

.04

.04

.04

.05

.05

.05

.05

.05

.05

.05

.05

.05

.06

.06

.06

.06

.11

.11

.11

.11

.10

.10

.10

.10

.10

.12

.12

.12

.12

[image: image409.wmf]=

BILL

25

71

6

1160

40

15

25

6

74.9

320

16

38

12

TO COMPUTE THE TOTAL BILL:

BUTNER: PRINT 1 - 4

COZART: PRINT 5 - 9

CREEDMORE: PRINT 10 - 13

OR: [image: image410.wmf]INVA

500

500

300

500

500

500

500

200

500

500

400

500

300

300

1000

10

100

1000

500

10

100

200

10

100

1000

1000

10

100

300

10

100

10

100

100

10

100

10000

10

100

10

100

10

100

10

100

99

2000

10

100

10

100

10

100

[image: image411.wmf]LOGTOTALINVA

log

(

)

INVA

log

(

)

COST

[image: image412.wmf]INVAREA

.

10

LOGTOTALINVA

THREE1

[image: image413.wmf]=

INVAREA

25

71

6

1160

40

15

25

6

74.9

320

16

38

12

THIS IS HOW TO ACHIEVE THE SOLUTION USING LOGS.

Now for one final example on how this method works. Suppose the government wishes to keep track of all the public utilities: water, gas and electricity. In the following example, this is the order that I will put in each value. Suppose the meter readings have been taken and subtracted. The cost for water is as above, the cost for gas is .001¢/cubic foot and the cost for electricity is 7¢/kilowatthour. The inventory and cost matrices are now:

[image: image414.wmf]A

500

5500

125

500

6000

150

300

7500

250

500

8000

2000

500

10000

450

500

12500

550

500

4650

125

200

9900

325

500

8750

225

500

6750

330

400

7500

150

500

8550

260

300

11000

550

300

0

0

1000

0

0

0

0

0

1000

0

0

500

0

0

0

0

0

200

0

0

0

0

0

1000

0

0

1000

0

0

0

0

0

300

0

0

0

0

0

[image: image415.wmf]B

0

0

0

100

0

0

0

0

0

10000

0

0

0

0

0

0

0

0

0

0

0

0

0

0

99

0

0

2000

0

0

0

0

0

0

0

0

0

0

0

THEN:

THEN THE TOTAL BILL =:

TOTAL ACCOUNTPAGE FOR TAXES

TOTAL BILL SENT TO CUSTOMERS

[image: image416.wmf]=

(

)

.

TOTALWGEUSA

TAXDB

1.5

0.33

0.525

7.26

0.36

0.63

0.36

0.45

1.05

69.6

0.48

8.4

2.4

0.6

1.89

0.9

0.75

2.31

1.5

0.279

0.525

0.36

0.594

1.365

4.494

0.525

0.945

19.2

0.405

1.386

0.96

0.45

0.63

2.28

0.513

1.092

0.72

0.66

2.31

[image: image417.wmf]=

TOTALBILLWGEUSA

26.5

5.83

9.275

128.26

6.36

11.13

6.36

7.95

18.55

1229.6

8.48

148.4

42.4

10.6

33.39

15.9

13.25

40.81

26.5

4.929

9.275

6.36

10.494

24.115

79.394

9.275

16.695

339.2

7.155

24.486

16.96

7.95

11.13

40.28

9.063

19.292

12.72

11.66

40.81

Household #1 received a bill of $26.50 for water, $5.83 for gas and $9.27 for electric with taxes of $1.50 for water, $0.33 tax on gas and $0.53 tax on electricity. Household #4 is a business, and paid $1229.6 for water, $8.48 for gas and $148.40 for electricity, etc.

_1038032012.bin

_1038034860.bin

_1038035581.bin

_1038035635.bin

_1038035821.bin

_1038035875.bin

_1038035772.bin

_1038035617.bin

_1038035522.bin

_1038035553.bin

_1038035465.bin

_1038032155.bin

_1038034620.bin

_1038034761.bin

_1038034597.bin

_1038032091.bin

_1038032114.bin

_1038032053.bin

_1036869371.bin

_1036869439.bin

_1036869507.bin

_1036869579.bin

_1038031942.bin

_1036869545.bin

_1036869475.bin

_1036869408.bin

_1036869280.bin

_1036869318.bin

_1036869246.bin

